A radiant shift: Attention-embedded CNNs for accurate solar irradiance forecasting and prediction from sky images

天空 辐照度 太阳辐照度 气象学 遥感 环境科学 计算机科学 人工智能 光学 物理 地理
作者
Anto Leoba Jonathan,Dongsheng Cai,Chiagoziem C. Ukwuoma,Nkou Joseph Junior Nkou,Qi Huang,Olusola Bamisile
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:234: 121133-121133
标识
DOI:10.1016/j.renene.2024.121133
摘要

The continuous increase in solar power integration with energy systems can be attributed to the push for cleaner energy use globally, highlighting the importance of accurate solar forecasts. Conventional prediction methods, although valuable, often fall short of delivering the precision required for dynamic energy management systems due to their inability to effectively capture the intricate relationships inherent in solar irradiance variations. This research addresses this limitation by introducing a novel approach that harnesses the potential of Attention-embedded Convolutional Neural Networks (ATT_CNN) to forecast Global Horizontal Irradiance (GHI), Direct Normal Irradiance (DNI), and Diffuse Horizontal Irradiance (DHI) for intra-hour solar forecasting utilizing sequences of sky images. The main contribution of this study is the integration of attention mechanisms into the CNN architecture, strategically designed to enhance their efficacy in predicting GHI, DNI, and DHI by fostering an adaptive focus on sky image features. First, we use SRRL dataset with GHI, DNI, and DHI features as predicting labels, then the Mean Bias Error (MBE), Root Mean Square Error (RMSE), and Forecasting RMSE skill score (FSS) are used to evaluate the model's performance. This study utilized six lead times and four sequence lengths, based on this the best combination is: Sequence length: 4 with Minutes: 20. This combination provides a balanced and optimal performance with low RMSE (62.75 W/m2), low MBE (2.71 W/m2), and a high FSS (38.81), indicating good accuracy, minimal bias, and high skill score. Furthermore, when compared with state-of-the-art models, the proposed model yielded superior results. This advancement holds profound implications for the optimization of solar power utilization within mainstream energy systems, further underscoring the significance of cutting-edge deep learning (DL) techniques in advancing sustainable energy technologies. The findings of this study indicate that integrating attention mechanisms is essential to enhance the accuracy and reliability of forecasts, and using longer sequences of images can further improve forecasting performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的夏天完成签到,获得积分10
刚刚
Kyrie 11发布了新的文献求助10
1秒前
1秒前
1秒前
深情安青应助宝宝言兼采纳,获得10
2秒前
yiling发布了新的文献求助10
3秒前
4秒前
6秒前
7秒前
7秒前
干净的冷松完成签到,获得积分10
7秒前
Owen应助等待的鞯采纳,获得10
9秒前
10秒前
10秒前
kchrisuzad发布了新的文献求助10
10秒前
FCL完成签到,获得积分10
11秒前
苯基乙胺发布了新的文献求助10
13秒前
13秒前
entscholar发布了新的文献求助30
17秒前
xxp完成签到 ,获得积分10
17秒前
fuje发布了新的文献求助10
21秒前
眯眯眼的谷兰完成签到 ,获得积分10
21秒前
21秒前
22秒前
安详念蕾完成签到,获得积分10
22秒前
22秒前
23秒前
Rosaline完成签到 ,获得积分10
23秒前
执剑燃此生完成签到,获得积分20
23秒前
渡劫完成签到,获得积分10
23秒前
Powerful完成签到,获得积分20
24秒前
小星完成签到 ,获得积分10
25秒前
25秒前
小陈要发SCI完成签到 ,获得积分10
25秒前
慕青应助yuaasusanaann采纳,获得10
26秒前
zho发布了新的文献求助10
26秒前
哈h发布了新的文献求助10
27秒前
smottom应助jinkk采纳,获得10
29秒前
啊猹发布了新的文献求助10
29秒前
科研鸟发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966458
求助须知:如何正确求助?哪些是违规求助? 3511927
关于积分的说明 11160884
捐赠科研通 3246684
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403