A radiant shift: Attention-embedded CNNs for accurate solar irradiance forecasting and prediction from sky images

天空 辐照度 太阳辐照度 气象学 遥感 环境科学 计算机科学 人工智能 光学 物理 地理
作者
Anto Leoba Jonathan,Dongsheng Cai,Chiagoziem C. Ukwuoma,Nkou Joseph Junior Nkou,Qi Huang,Olusola Bamisile
出处
期刊:Renewable Energy [Elsevier]
卷期号:234: 121133-121133
标识
DOI:10.1016/j.renene.2024.121133
摘要

The continuous increase in solar power integration with energy systems can be attributed to the push for cleaner energy use globally, highlighting the importance of accurate solar forecasts. Conventional prediction methods, although valuable, often fall short of delivering the precision required for dynamic energy management systems due to their inability to effectively capture the intricate relationships inherent in solar irradiance variations. This research addresses this limitation by introducing a novel approach that harnesses the potential of Attention-embedded Convolutional Neural Networks (ATT_CNN) to forecast Global Horizontal Irradiance (GHI), Direct Normal Irradiance (DNI), and Diffuse Horizontal Irradiance (DHI) for intra-hour solar forecasting utilizing sequences of sky images. The main contribution of this study is the integration of attention mechanisms into the CNN architecture, strategically designed to enhance their efficacy in predicting GHI, DNI, and DHI by fostering an adaptive focus on sky image features. First, we use SRRL dataset with GHI, DNI, and DHI features as predicting labels, then the Mean Bias Error (MBE), Root Mean Square Error (RMSE), and Forecasting RMSE skill score (FSS) are used to evaluate the model's performance. This study utilized six lead times and four sequence lengths, based on this the best combination is: Sequence length: 4 with Minutes: 20. This combination provides a balanced and optimal performance with low RMSE (62.75 W/m2), low MBE (2.71 W/m2), and a high FSS (38.81), indicating good accuracy, minimal bias, and high skill score. Furthermore, when compared with state-of-the-art models, the proposed model yielded superior results. This advancement holds profound implications for the optimization of solar power utilization within mainstream energy systems, further underscoring the significance of cutting-edge deep learning (DL) techniques in advancing sustainable energy technologies. The findings of this study indicate that integrating attention mechanisms is essential to enhance the accuracy and reliability of forecasts, and using longer sequences of images can further improve forecasting performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雁来月发布了新的文献求助10
刚刚
buno应助0957采纳,获得10
1秒前
Susie发布了新的文献求助10
2秒前
搞快点完成签到,获得积分10
2秒前
叽里呱啦发布了新的文献求助10
2秒前
陈冲发布了新的文献求助10
3秒前
3秒前
共享精神应助yolo采纳,获得10
3秒前
4秒前
许结朱陈完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
7秒前
Bob完成签到,获得积分10
8秒前
8秒前
情怀应助Xiaopei采纳,获得10
8秒前
玉玉玉给玉玉玉的求助进行了留言
8秒前
wuming发布了新的文献求助20
8秒前
9秒前
wanci应助cxy0714采纳,获得10
9秒前
adw完成签到,获得积分10
9秒前
10秒前
超级的背包完成签到,获得积分10
11秒前
陈冲完成签到,获得积分10
12秒前
不配.应助w王w采纳,获得10
12秒前
adw发布了新的文献求助10
12秒前
Lili发布了新的文献求助10
13秒前
15秒前
Csardas完成签到,获得积分10
15秒前
小生有礼发布了新的文献求助30
15秒前
16秒前
稳重的若雁应助Yuying采纳,获得10
16秒前
17秒前
28完成签到,获得积分10
17秒前
爱笑茉莉完成签到,获得积分10
18秒前
科研通AI2S应助山川的奴采纳,获得10
18秒前
19秒前
丘比特应助11采纳,获得10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227924
求助须知:如何正确求助?哪些是违规求助? 2875853
关于积分的说明 8192703
捐赠科研通 2542990
什么是DOI,文献DOI怎么找? 1373292
科研通“疑难数据库(出版商)”最低求助积分说明 646745
邀请新用户注册赠送积分活动 621196