A radiant shift: Attention-embedded CNNs for accurate solar irradiance forecasting and prediction from sky images

天空 辐照度 太阳辐照度 气象学 遥感 环境科学 计算机科学 人工智能 光学 物理 地理
作者
Anto Leoba Jonathan,Dongsheng Cai,Chiagoziem C. Ukwuoma,Nkou Joseph Junior Nkou,Qi Huang,Olusola Bamisile
出处
期刊:Renewable Energy [Elsevier]
卷期号:234: 121133-121133
标识
DOI:10.1016/j.renene.2024.121133
摘要

The continuous increase in solar power integration with energy systems can be attributed to the push for cleaner energy use globally, highlighting the importance of accurate solar forecasts. Conventional prediction methods, although valuable, often fall short of delivering the precision required for dynamic energy management systems due to their inability to effectively capture the intricate relationships inherent in solar irradiance variations. This research addresses this limitation by introducing a novel approach that harnesses the potential of Attention-embedded Convolutional Neural Networks (ATT_CNN) to forecast Global Horizontal Irradiance (GHI), Direct Normal Irradiance (DNI), and Diffuse Horizontal Irradiance (DHI) for intra-hour solar forecasting utilizing sequences of sky images. The main contribution of this study is the integration of attention mechanisms into the CNN architecture, strategically designed to enhance their efficacy in predicting GHI, DNI, and DHI by fostering an adaptive focus on sky image features. First, we use SRRL dataset with GHI, DNI, and DHI features as predicting labels, then the Mean Bias Error (MBE), Root Mean Square Error (RMSE), and Forecasting RMSE skill score (FSS) are used to evaluate the model's performance. This study utilized six lead times and four sequence lengths, based on this the best combination is: Sequence length: 4 with Minutes: 20. This combination provides a balanced and optimal performance with low RMSE (62.75 W/m2), low MBE (2.71 W/m2), and a high FSS (38.81), indicating good accuracy, minimal bias, and high skill score. Furthermore, when compared with state-of-the-art models, the proposed model yielded superior results. This advancement holds profound implications for the optimization of solar power utilization within mainstream energy systems, further underscoring the significance of cutting-edge deep learning (DL) techniques in advancing sustainable energy technologies. The findings of this study indicate that integrating attention mechanisms is essential to enhance the accuracy and reliability of forecasts, and using longer sequences of images can further improve forecasting performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹筏过海应助季生采纳,获得30
刚刚
1秒前
buno应助22采纳,获得10
2秒前
赘婿应助TT采纳,获得10
3秒前
3秒前
3秒前
4秒前
Jenny应助赖道之采纳,获得10
6秒前
依古比古完成签到 ,获得积分10
8秒前
汎影发布了新的文献求助10
8秒前
小二完成签到,获得积分10
8秒前
9秒前
11秒前
顾矜应助长情洙采纳,获得10
11秒前
monere发布了新的文献求助30
11秒前
Xiaoxiao应助汉关采纳,获得10
13秒前
13秒前
汎影完成签到,获得积分10
14秒前
15秒前
Chen发布了新的文献求助10
17秒前
WW完成签到,获得积分10
17秒前
19秒前
hyjcnhyj完成签到,获得积分10
20秒前
英姑应助赖道之采纳,获得10
21秒前
23秒前
研友_LXdbaL发布了新的文献求助30
23秒前
思源应助单薄新烟采纳,获得10
24秒前
24秒前
25秒前
Zz完成签到,获得积分10
25秒前
Prandtl完成签到 ,获得积分10
27秒前
28秒前
zfzf0422完成签到 ,获得积分10
29秒前
上官若男应助jackie采纳,获得10
29秒前
29秒前
我是站长才怪应助Benliu采纳,获得20
30秒前
30秒前
zh20130完成签到,获得积分10
30秒前
30秒前
TT发布了新的文献求助10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808