Facial recognition for disease diagnosis using a deep learning convolutional neural network: a systematic review and meta-analysis

医学 卷积神经网络 荟萃分析 人工智能 深度学习 疾病 系统回顾 梅德林 生物信息学 病理 计算机科学 生物 政治学 法学
作者
Xinru Kong,Ziyue Wang,Jie Sun,Xianghua Qi,Qianhui Qiu,Xiao Ding
出处
期刊:Postgraduate Medical Journal [Oxford University Press]
卷期号:100 (1189): 796-810 被引量:1
标识
DOI:10.1093/postmj/qgae061
摘要

Abstract Background With the rapid advancement of deep learning network technology, the application of facial recognition technology in the medical field has received increasing attention. Objective This study aims to systematically review the literature of the past decade on facial recognition technology based on deep learning networks in the diagnosis of rare dysmorphic diseases and facial paralysis, among other conditions, to determine the effectiveness and applicability of this technology in disease identification. Methods This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for literature search and retrieved relevant literature from multiple databases, including PubMed, on 31 December 2023. The search keywords included deep learning convolutional neural networks, facial recognition, and disease recognition. A total of 208 articles on facial recognition technology based on deep learning networks in disease diagnosis over the past 10 years were screened, and 22 articles were selected for analysis. The meta-analysis was conducted using Stata 14.0 software. Results The study collected 22 articles with a total sample size of 57 539 cases, of which 43 301 were samples with various diseases. The meta-analysis results indicated that the accuracy of deep learning in facial recognition for disease diagnosis was 91.0% [95% CI (87.0%, 95.0%)]. Conclusion The study results suggested that facial recognition technology based on deep learning networks has high accuracy in disease diagnosis, providing a reference for further development and application of this technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mo发布了新的文献求助10
刚刚
1秒前
2秒前
且陶陶发布了新的文献求助10
2秒前
wbh发布了新的文献求助10
2秒前
诗意Sy发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
可爱的函函应助和和采纳,获得10
4秒前
4秒前
无奈镜子发布了新的文献求助10
4秒前
李瑞卿完成签到 ,获得积分10
5秒前
Young发布了新的文献求助10
5秒前
xiaowu发布了新的文献求助10
5秒前
英俊的铭应助zwhy采纳,获得10
5秒前
CipherSage应助傻傻的芷巧采纳,获得10
6秒前
6秒前
小梁发布了新的文献求助10
6秒前
6秒前
gaterina发布了新的文献求助10
7秒前
自信的秋灵完成签到,获得积分10
7秒前
7秒前
小白发布了新的文献求助10
8秒前
充电宝应助Juvenilesy采纳,获得30
8秒前
西西发布了新的文献求助10
9秒前
momo发布了新的文献求助10
9秒前
xiaowu完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
bkagyin应助kingwill采纳,获得30
10秒前
手残症完成签到,获得积分10
11秒前
左左发布了新的文献求助10
12秒前
萧水白应助王定伟采纳,获得10
12秒前
12秒前
刘浩然发布了新的文献求助50
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971125
求助须知:如何正确求助?哪些是违规求助? 3515824
关于积分的说明 11179811
捐赠科研通 3250971
什么是DOI,文献DOI怎么找? 1795610
邀请新用户注册赠送积分活动 875897
科研通“疑难数据库(出版商)”最低求助积分说明 805207