已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Facial recognition for disease diagnosis using a deep learning convolutional neural network: a systematic review and meta-analysis

医学 卷积神经网络 荟萃分析 人工智能 深度学习 疾病 系统回顾 梅德林 生物信息学 病理 计算机科学 生物 政治学 法学
作者
Xinru Kong,Ziyue Wang,Jie Sun,Xianghua Qi,Qianhui Qiu,Xiao Ding
出处
期刊:Postgraduate Medical Journal [BMJ]
标识
DOI:10.1093/postmj/qgae061
摘要

Abstract Background With the rapid advancement of deep learning network technology, the application of facial recognition technology in the medical field has received increasing attention. Objective This study aims to systematically review the literature of the past decade on facial recognition technology based on deep learning networks in the diagnosis of rare dysmorphic diseases and facial paralysis, among other conditions, to determine the effectiveness and applicability of this technology in disease identification. Methods This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for literature search and retrieved relevant literature from multiple databases, including PubMed, on 31 December 2023. The search keywords included deep learning convolutional neural networks, facial recognition, and disease recognition. A total of 208 articles on facial recognition technology based on deep learning networks in disease diagnosis over the past 10 years were screened, and 22 articles were selected for analysis. The meta-analysis was conducted using Stata 14.0 software. Results The study collected 22 articles with a total sample size of 57 539 cases, of which 43 301 were samples with various diseases. The meta-analysis results indicated that the accuracy of deep learning in facial recognition for disease diagnosis was 91.0% [95% CI (87.0%, 95.0%)]. Conclusion The study results suggested that facial recognition technology based on deep learning networks has high accuracy in disease diagnosis, providing a reference for further development and application of this technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花痴的易真完成签到,获得积分10
刚刚
1秒前
1秒前
医海心潮发布了新的文献求助10
2秒前
专注的帆布鞋完成签到 ,获得积分10
3秒前
4秒前
归tu发布了新的文献求助10
6秒前
阿千发布了新的文献求助10
8秒前
寻道图强完成签到,获得积分0
8秒前
风衣拖地完成签到 ,获得积分10
10秒前
隐形曼青应助归tu采纳,获得10
11秒前
等待的问夏完成签到 ,获得积分10
12秒前
13秒前
13秒前
传统的幻梦完成签到,获得积分10
14秒前
优雅苑睐完成签到,获得积分10
16秒前
tt完成签到,获得积分10
16秒前
田様应助zhong采纳,获得10
17秒前
aliupeifang完成签到,获得积分10
17秒前
pupi完成签到 ,获得积分10
18秒前
abbsdan发布了新的文献求助10
19秒前
三水发布了新的文献求助30
19秒前
李健应助阿千采纳,获得10
20秒前
吕半鬼完成签到,获得积分0
20秒前
洛神完成签到 ,获得积分10
21秒前
123完成签到 ,获得积分10
21秒前
wy.he应助aliupeifang采纳,获得10
23秒前
24秒前
24秒前
yema完成签到 ,获得积分10
27秒前
儒雅的焦完成签到,获得积分10
28秒前
科研通AI2S应助折原蘑菇采纳,获得10
28秒前
林林总总发布了新的文献求助10
29秒前
阿千完成签到,获得积分10
29秒前
可爱的函函应助zhong采纳,获得10
29秒前
不复返的杆完成签到 ,获得积分10
30秒前
儒雅的焦发布了新的文献求助10
32秒前
yiduo完成签到,获得积分10
32秒前
32秒前
091完成签到 ,获得积分10
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162132
求助须知:如何正确求助?哪些是违规求助? 2813218
关于积分的说明 7899319
捐赠科研通 2472386
什么是DOI,文献DOI怎么找? 1316444
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142