亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Facial recognition for disease diagnosis using a deep learning convolutional neural network: a systematic review and meta-analysis

医学 卷积神经网络 荟萃分析 人工智能 深度学习 疾病 系统回顾 梅德林 生物信息学 病理 计算机科学 政治学 生物 法学
作者
Xinru Kong,Ziyue Wang,Jie Sun,Xianghua Qi,Qianhui Qiu,Xiao Ding
出处
期刊:Postgraduate Medical Journal [BMJ]
标识
DOI:10.1093/postmj/qgae061
摘要

Abstract Background With the rapid advancement of deep learning network technology, the application of facial recognition technology in the medical field has received increasing attention. Objective This study aims to systematically review the literature of the past decade on facial recognition technology based on deep learning networks in the diagnosis of rare dysmorphic diseases and facial paralysis, among other conditions, to determine the effectiveness and applicability of this technology in disease identification. Methods This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for literature search and retrieved relevant literature from multiple databases, including PubMed, on 31 December 2023. The search keywords included deep learning convolutional neural networks, facial recognition, and disease recognition. A total of 208 articles on facial recognition technology based on deep learning networks in disease diagnosis over the past 10 years were screened, and 22 articles were selected for analysis. The meta-analysis was conducted using Stata 14.0 software. Results The study collected 22 articles with a total sample size of 57 539 cases, of which 43 301 were samples with various diseases. The meta-analysis results indicated that the accuracy of deep learning in facial recognition for disease diagnosis was 91.0% [95% CI (87.0%, 95.0%)]. Conclusion The study results suggested that facial recognition technology based on deep learning networks has high accuracy in disease diagnosis, providing a reference for further development and application of this technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HYQ完成签到 ,获得积分10
2秒前
简单的皮皮虾完成签到 ,获得积分10
10秒前
Jocelyn关注了科研通微信公众号
21秒前
37秒前
Jocelyn发布了新的文献求助10
44秒前
majer完成签到,获得积分10
2分钟前
清秀的怀蕊完成签到 ,获得积分10
2分钟前
3分钟前
David发布了新的文献求助10
3分钟前
英姑应助科研通管家采纳,获得10
4分钟前
4分钟前
含糊的茹妖完成签到 ,获得积分10
4分钟前
许志强完成签到,获得积分20
5分钟前
妇产科医生完成签到 ,获得积分10
5分钟前
许志强发布了新的文献求助10
5分钟前
英姑应助oleskarabach采纳,获得10
6分钟前
小宋爱科研完成签到 ,获得积分10
6分钟前
螃蟹One完成签到 ,获得积分10
6分钟前
小白小王完成签到,获得积分10
8分钟前
8分钟前
这辈子瘦不了完成签到,获得积分10
9分钟前
9分钟前
tinyliiyong发布了新的文献求助10
9分钟前
9分钟前
9分钟前
tinyliiyong完成签到,获得积分10
10分钟前
ding应助tinyliiyong采纳,获得30
10分钟前
10分钟前
10分钟前
禾苗完成签到 ,获得积分10
10分钟前
10分钟前
11分钟前
11分钟前
asdfqaz完成签到,获得积分10
12分钟前
13分钟前
不担心发布了新的文献求助10
13分钟前
wanci应助不担心采纳,获得10
13分钟前
爆米花应助WANG采纳,获得10
14分钟前
魔幻诗兰完成签到,获得积分10
14分钟前
小强完成签到 ,获得积分10
14分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056622
求助须知:如何正确求助?哪些是违规求助? 2713071
关于积分的说明 7434576
捐赠科研通 2358176
什么是DOI,文献DOI怎么找? 1249304
科研通“疑难数据库(出版商)”最低求助积分说明 607015
版权声明 596227