亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Facial recognition for disease diagnosis using a deep learning convolutional neural network: a systematic review and meta-analysis

医学 卷积神经网络 荟萃分析 人工智能 深度学习 疾病 系统回顾 梅德林 生物信息学 病理 计算机科学 生物 政治学 法学
作者
Xinru Kong,Ziyue Wang,Jie Sun,Xianghua Qi,Qianhui Qiu,Xiao Ding
出处
期刊:Postgraduate Medical Journal [BMJ]
卷期号:100 (1189): 796-810 被引量:1
标识
DOI:10.1093/postmj/qgae061
摘要

Abstract Background With the rapid advancement of deep learning network technology, the application of facial recognition technology in the medical field has received increasing attention. Objective This study aims to systematically review the literature of the past decade on facial recognition technology based on deep learning networks in the diagnosis of rare dysmorphic diseases and facial paralysis, among other conditions, to determine the effectiveness and applicability of this technology in disease identification. Methods This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for literature search and retrieved relevant literature from multiple databases, including PubMed, on 31 December 2023. The search keywords included deep learning convolutional neural networks, facial recognition, and disease recognition. A total of 208 articles on facial recognition technology based on deep learning networks in disease diagnosis over the past 10 years were screened, and 22 articles were selected for analysis. The meta-analysis was conducted using Stata 14.0 software. Results The study collected 22 articles with a total sample size of 57 539 cases, of which 43 301 were samples with various diseases. The meta-analysis results indicated that the accuracy of deep learning in facial recognition for disease diagnosis was 91.0% [95% CI (87.0%, 95.0%)]. Conclusion The study results suggested that facial recognition technology based on deep learning networks has high accuracy in disease diagnosis, providing a reference for further development and application of this technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
harrywoo完成签到,获得积分20
1秒前
栀盎完成签到 ,获得积分10
29秒前
yujie完成签到 ,获得积分10
41秒前
47秒前
1分钟前
CodeCraft应助王红玉采纳,获得10
1分钟前
1分钟前
1分钟前
王红玉发布了新的文献求助10
1分钟前
2分钟前
和谐的芷文完成签到 ,获得积分10
2分钟前
胡萝卜完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
mochalv123完成签到 ,获得积分10
4分钟前
ZDTT完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
6分钟前
whichwu发布了新的文献求助10
6分钟前
6分钟前
6分钟前
Gigi发布了新的文献求助10
6分钟前
whichwu完成签到,获得积分10
6分钟前
6分钟前
GingerF应助dh采纳,获得60
6分钟前
7分钟前
jarrykim发布了新的文献求助10
7分钟前
WebCasa完成签到,获得积分10
7分钟前
7分钟前
Picopy发布了新的文献求助10
8分钟前
8分钟前
jarrykim完成签到,获得积分10
8分钟前
poohpooh发布了新的文献求助10
8分钟前
8分钟前
poohpooh完成签到,获得积分10
8分钟前
9分钟前
Picopy完成签到,获得积分10
9分钟前
xiaowangwang完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413296
求助须知:如何正确求助?哪些是违规求助? 4530416
关于积分的说明 14122913
捐赠科研通 4445466
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408756