EDASNet: efficient dynamic adaptive-scale network for infrared pedestrian detection

计算机科学 增采样 特征(语言学) 卷积(计算机科学) 棱锥(几何) 行人检测 比例(比率) 人工智能 目标检测 特征提取 模式识别(心理学) 计算机视觉 图像(数学) 人工神经网络 行人 数学 物理 量子力学 运输工程 工程类 哲学 语言学 几何学
作者
Yang Liu,Ming Zhang,Fei Fan,Dahua Yu,Jianjun Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 115406-115406
标识
DOI:10.1088/1361-6501/ad6bb3
摘要

Abstract Infrared images are widely utilized due to their exceptional anti-interference capabilities. However, challenges such as low resolution and an absence of detailed texture can impede the effective recognition of multi-scale target information, particularly for small targets. To address these issues, we introduce a multi-scale detection framework named efficient dynamic adaptive-scale network (EDASNet), which focuses on enhancing the feature extraction of small objects while ensuring efficient detection of multi-scale. Firstly, we design a lightweight dynamic enhance network as the backbone for feature extraction. It mainly includes a lightweight adaptive-weight downsampling module and a dynamic enhancement convolution module. In addition, a multi-scale aggregation feature pyramid network is proposed, which improves the perception effect of small objects through a multi-scale convolution module. Then, the Repulsion Loss term was introduced based on CIOU to effectively solve the missed detection problem caused by target overlap. Finally, the dynamic head was used as the network detection head, and through the superposition of dynamic convolution and multiple attention, the network was able to accurately realize multi-scale object detection. Comprehensive experiments show that EDASNet outperforms existing efficient models and achieves a good trade-off between speed and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意之玉发布了新的文献求助10
1秒前
肉肉完成签到,获得积分10
1秒前
CodeCraft应助binglangcha采纳,获得10
3秒前
可爱的函函应助霍小美采纳,获得10
4秒前
4秒前
4秒前
王大可完成签到,获得积分10
4秒前
6秒前
7秒前
7秒前
9秒前
涨芝士完成签到 ,获得积分10
10秒前
小胖发布了新的文献求助10
11秒前
11秒前
junzilan发布了新的文献求助10
11秒前
充电宝应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
fbsnbgfn发布了新的文献求助10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
Orange应助123采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
13秒前
充电宝应助搁浅采纳,获得10
14秒前
飞翔的霸天哥应助唐沐晨采纳,获得30
14秒前
尚影芷完成签到,获得积分10
15秒前
iiiorange发布了新的文献求助10
15秒前
小鱼儿发布了新的文献求助10
15秒前
FashionBoy应助啾啾尼泊尔采纳,获得10
16秒前
欢歌笑语完成签到,获得积分10
16秒前
wwc应助白小白采纳,获得10
16秒前
18秒前
czy完成签到,获得积分10
18秒前
19秒前
12123发布了新的文献求助20
19秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299726
求助须知:如何正确求助?哪些是违规求助? 2934627
关于积分的说明 8469883
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424065
科研通“疑难数据库(出版商)”最低求助积分说明 661818
邀请新用户注册赠送积分活动 645574