Improving Computer-aided Detection for Digital Breast Tomosynthesis by Incorporating Temporal Change

层析合成 技术 计算机科学 数字乳腺摄影术 人工智能 计算机视觉 医学物理学 乳腺摄影术 乳腺癌 医学 内科学 癌症
作者
Yinhao Ren,Zisheng Liang,Jun Ge,Xiaoming Xu,Jonathan Go,Derek L. Nguyen,Joseph Y. Lo,Lars J. Grimm
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (5) 被引量:3
标识
DOI:10.1148/ryai.230391
摘要

Purpose To develop a deep learning algorithm that uses temporal information to improve the performance of a previously published framework of cancer lesion detection for digital breast tomosynthesis. Materials and Methods This retrospective study analyzed the current and the 1-year-prior Hologic digital breast tomosynthesis screening examinations from eight different institutions between 2016 and 2020. The dataset contained 973 cancer and 7123 noncancer cases. The front end of this algorithm was an existing deep learning framework that performed single-view lesion detection followed by ipsilateral view matching. For this study, PriorNet was implemented as a cascaded deep learning module that used the additional growth information to refine the final probability of malignancy. Data from seven of the eight sites were used for training and validation, while the eighth site was reserved for external testing. Model performance was evaluated using localization receiver operating characteristic curves. Results On the validation set, PriorNet showed an area under the receiver operating characteristic curve (AUC) of 0.931 (95% CI: 0.930, 0.931), which outperformed both baseline models using single-view detection (AUC, 0.892 [95% CI: 0.891, 0.892];
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gilana驳回了Jack应助
刚刚
RY发布了新的文献求助10
刚刚
JoyceeZHONG完成签到,获得积分10
刚刚
刚刚
努力向前看完成签到,获得积分10
1秒前
1秒前
怕黑怜晴完成签到,获得积分10
2秒前
oversizedzip完成签到 ,获得积分10
2秒前
3秒前
老实不尤完成签到,获得积分10
3秒前
suwan完成签到,获得积分10
3秒前
斯文败类应助大方念云采纳,获得10
4秒前
5秒前
zzzz发布了新的文献求助10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
小伍完成签到,获得积分10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
chemly完成签到 ,获得积分10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
烟花应助想个名字采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
6秒前
斯文败类应助Wu采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
陈某某完成签到,获得积分10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得30
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557057
求助须知:如何正确求助?哪些是违规求助? 3132400
关于积分的说明 9396994
捐赠科研通 2832554
什么是DOI,文献DOI怎么找? 1556834
邀请新用户注册赠送积分活动 726953
科研通“疑难数据库(出版商)”最低求助积分说明 716170