Attention Mechanism Based on Deep Learning for Defect Detection of Wind Turbine Blade Via Multi-scale Features

刀(考古) 机制(生物学) 涡轮机 涡轮叶片 比例(比率) 计算机科学 海洋工程 人工智能 航空航天工程 地质学 工程类 结构工程 物理 地图学 地理 量子力学
作者
Yu Zhang,Yu Fang,Weiwei Gao,Xintian Liu,Hao Yang,Yunwen Tong,Manyi Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105408-105408 被引量:2
标识
DOI:10.1088/1361-6501/ad6024
摘要

Abstract An enhanced wind turbine blade surface defect detection algorithm, CGIW-YOLOv8, has been introduced to tackle the problems of uneven distribution of defect samples, confusion between defects and background, and variations in target scales that arise during drone maintenance of wind turbine blades. This algorithm is given based on the YOLOv8 model. Initially, a data augmentation method based on geometric changes and Poisson mixing was used to enrich the dataset and address the problem of uneven sample distribution. Subsequently, the incorporation of the Coordinate Attention (CA) mechanism into the Backbone network improved the feature extraction capability in complex backgrounds. In the Neck, the Reparameterized Generalized Feature Pyramid Network (Rep-GFPN) was introduced as a path fusion strategy and multiple cross-scale connections are fused, which effectively enhances the multi-scale expression ability of the network. Finally, the original CIOU loss function was replaced with Inner-WIoU, which was created by applying the Inner-IoU loss function to the Wise-IoU loss function. It improved detection accuracy while simultaneously speeding up the model’s rate of convergence. Experimental results show that the mAP of the method for defect detection reaches 92%, which is 5.5% higher than the baseline network. The detection speed is 120.5 FPS , which meets the needs of real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rondab应助卡卡罗特采纳,获得10
刚刚
4秒前
8秒前
9秒前
芋孟齐发布了新的文献求助10
9秒前
13秒前
13秒前
一路生花完成签到,获得积分10
13秒前
orixero应助小慧儿采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
潇湘雪月发布了新的文献求助10
14秒前
今后应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得30
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
栗惠完成签到 ,获得积分20
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
猪猪hero发布了新的文献求助10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
Bob完成签到,获得积分10
15秒前
18秒前
19秒前
19秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136