Attention Mechanism Based on Deep Learning for Defect Detection of Wind Turbine Blade Via Multi-scale Features

刀(考古) 机制(生物学) 涡轮机 涡轮叶片 比例(比率) 计算机科学 海洋工程 人工智能 航空航天工程 地质学 工程类 结构工程 物理 地图学 地理 量子力学
作者
NULL AUTHOR_ID,NULL AUTHOR_ID,NULL AUTHOR_ID,Xintian Liu,Hao Yang,NULL AUTHOR_ID,Manyi Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad6024
摘要

Abstract An enhanced wind turbine blade surface defect detection algorithm, CGIW-YOLOv8, has been introduced to tackle the problems of uneven distribution of defect samples, confusion between defects and background, and variations in target scales that arise during drone maintenance of wind turbine blades. This algorithm is given based on the YOLOv8 model. Initially, a data augmentation method based on geometric changes and Poisson mixing was used to enrich the dataset and address the problem of uneven sample distribution. Subsequently, the incorporation of the Coordinate Attention (CA) mechanism into the Backbone network improved the feature extraction capability in complex backgrounds. In the Neck, the Reparameterized Generalized Feature Pyramid Network (Rep-GFPN) was introduced as a path fusion strategy and multiple cross-scale connections are fused, which effectively enhances the multi-scale expression ability of the network. Finally, the original CIOU loss function was replaced with Inner-WIoU, which was created by applying the Inner-IoU loss function to the Wise-IoU loss function. It improved detection accuracy while simultaneously speeding up the model's rate of convergence. Experimental results show that the mAP of the method for defect detection reaches 92%, which is 5.5% higher than the baseline network. The detection speed is 120.5 FPS, which meets the needs of real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zac2023完成签到,获得积分20
1秒前
哈哈哈完成签到 ,获得积分10
1秒前
Dreamhappy完成签到,获得积分10
2秒前
痴痴的噜完成签到,获得积分10
3秒前
5秒前
jyx完成签到,获得积分10
5秒前
碧蓝曼安完成签到,获得积分10
6秒前
上官若男应助孤独翠柏采纳,获得10
7秒前
阿冰发布了新的文献求助10
8秒前
9秒前
Six_seven完成签到,获得积分10
9秒前
9秒前
龙1完成签到,获得积分10
9秒前
waily完成签到,获得积分10
9秒前
橙子将完成签到,获得积分20
9秒前
ziyu完成签到,获得积分10
9秒前
科研迪发布了新的文献求助10
12秒前
老实黄蜂发布了新的文献求助10
13秒前
13秒前
13秒前
waily发布了新的文献求助10
14秒前
ll完成签到 ,获得积分10
14秒前
张渔歌完成签到,获得积分10
16秒前
掉头发的小白完成签到,获得积分10
16秒前
无花果应助俏皮诺言采纳,获得10
17秒前
18秒前
19秒前
秋浱发布了新的文献求助10
19秒前
小鱼发布了新的文献求助10
19秒前
一颗烂番茄完成签到 ,获得积分10
20秒前
为为子完成签到 ,获得积分10
22秒前
SciGPT应助Murphy采纳,获得30
22秒前
23秒前
畅快访蕊发布了新的文献求助10
23秒前
25秒前
fdhineodobh花开富贵完成签到,获得积分10
25秒前
科研迪完成签到,获得积分10
25秒前
艾欧比完成签到 ,获得积分10
26秒前
骞骞完成签到,获得积分10
26秒前
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162769
求助须知:如何正确求助?哪些是违规求助? 2813701
关于积分的说明 7901715
捐赠科研通 2473342
什么是DOI,文献DOI怎么找? 1316778
科研通“疑难数据库(出版商)”最低求助积分说明 631516
版权声明 602175