Attention Mechanism Based on Deep Learning for Defect Detection of Wind Turbine Blade Via Multi-scale Features

刀(考古) 机制(生物学) 涡轮机 涡轮叶片 比例(比率) 计算机科学 海洋工程 人工智能 航空航天工程 地质学 工程类 结构工程 物理 地图学 地理 量子力学
作者
Yu Zhang,Yu Fang,Weiwei Gao,Xintian Liu,Hao Yang,Yixiao Tong,Manyi Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105408-105408 被引量:4
标识
DOI:10.1088/1361-6501/ad6024
摘要

Abstract An enhanced wind turbine blade surface defect detection algorithm, CGIW-YOLOv8, has been introduced to tackle the problems of uneven distribution of defect samples, confusion between defects and background, and variations in target scales that arise during drone maintenance of wind turbine blades. This algorithm is given based on the YOLOv8 model. Initially, a data augmentation method based on geometric changes and Poisson mixing was used to enrich the dataset and address the problem of uneven sample distribution. Subsequently, the incorporation of the Coordinate Attention (CA) mechanism into the Backbone network improved the feature extraction capability in complex backgrounds. In the Neck, the Reparameterized Generalized Feature Pyramid Network (Rep-GFPN) was introduced as a path fusion strategy and multiple cross-scale connections are fused, which effectively enhances the multi-scale expression ability of the network. Finally, the original CIOU loss function was replaced with Inner-WIoU, which was created by applying the Inner-IoU loss function to the Wise-IoU loss function. It improved detection accuracy while simultaneously speeding up the model’s rate of convergence. Experimental results show that the mAP of the method for defect detection reaches 92%, which is 5.5% higher than the baseline network. The detection speed is 120.5 FPS , which meets the needs of real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
从容的巧曼完成签到 ,获得积分10
1秒前
687发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
猪头完成签到 ,获得积分10
3秒前
jia发布了新的文献求助10
5秒前
sssss完成签到 ,获得积分10
5秒前
5秒前
哈哈嘻嘻完成签到,获得积分10
5秒前
奶昔发布了新的文献求助10
6秒前
mrmrer完成签到,获得积分10
6秒前
Baibai发布了新的文献求助10
6秒前
6秒前
Ammon发布了新的文献求助10
7秒前
你大米哥完成签到 ,获得积分0
7秒前
才是自由完成签到,获得积分20
7秒前
7秒前
Cruffin发布了新的文献求助10
7秒前
NexusExplorer应助tan90采纳,获得10
8秒前
猪头关注了科研通微信公众号
8秒前
guangshuang发布了新的文献求助10
8秒前
贤惠的爆米花完成签到,获得积分10
9秒前
10秒前
linhongwei完成签到,获得积分10
10秒前
英姑应助Jared采纳,获得10
11秒前
善学以致用应助催催催采纳,获得10
12秒前
12138发布了新的文献求助10
13秒前
勾勾完成签到 ,获得积分10
13秒前
14秒前
可爱迷人的反派角色完成签到,获得积分10
14秒前
15秒前
mqq发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
陌上发布了新的文献求助10
16秒前
乐进完成签到,获得积分10
16秒前
17秒前
SciGPT应助OVO采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469224
求助须知:如何正确求助?哪些是违规求助? 4572331
关于积分的说明 14335257
捐赠科研通 4499207
什么是DOI,文献DOI怎么找? 2464985
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051