Attention Mechanism Based on Deep Learning for Defect Detection of Wind Turbine Blade Via Multi-scale Features

刀(考古) 机制(生物学) 涡轮机 涡轮叶片 比例(比率) 计算机科学 海洋工程 人工智能 航空航天工程 地质学 工程类 结构工程 物理 地图学 地理 量子力学
作者
Yu Zhang,Yu Fang,Weiwei Gao,Xintian Liu,Hao Yang,Yixiao Tong,Manyi Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105408-105408 被引量:4
标识
DOI:10.1088/1361-6501/ad6024
摘要

Abstract An enhanced wind turbine blade surface defect detection algorithm, CGIW-YOLOv8, has been introduced to tackle the problems of uneven distribution of defect samples, confusion between defects and background, and variations in target scales that arise during drone maintenance of wind turbine blades. This algorithm is given based on the YOLOv8 model. Initially, a data augmentation method based on geometric changes and Poisson mixing was used to enrich the dataset and address the problem of uneven sample distribution. Subsequently, the incorporation of the Coordinate Attention (CA) mechanism into the Backbone network improved the feature extraction capability in complex backgrounds. In the Neck, the Reparameterized Generalized Feature Pyramid Network (Rep-GFPN) was introduced as a path fusion strategy and multiple cross-scale connections are fused, which effectively enhances the multi-scale expression ability of the network. Finally, the original CIOU loss function was replaced with Inner-WIoU, which was created by applying the Inner-IoU loss function to the Wise-IoU loss function. It improved detection accuracy while simultaneously speeding up the model’s rate of convergence. Experimental results show that the mAP of the method for defect detection reaches 92%, which is 5.5% higher than the baseline network. The detection speed is 120.5 FPS , which meets the needs of real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助小云采纳,获得10
刚刚
1秒前
3秒前
兔大夫完成签到 ,获得积分10
4秒前
gx发布了新的文献求助10
4秒前
5秒前
6秒前
weiliu发布了新的文献求助10
6秒前
6秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
cmuzf发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
14秒前
小云发布了新的文献求助10
14秒前
14秒前
遇见胡桃夹子完成签到,获得积分10
14秒前
15秒前
深情安青应助lyx采纳,获得10
15秒前
诚信小馒头完成签到 ,获得积分10
15秒前
zt完成签到,获得积分10
16秒前
17秒前
了了发布了新的文献求助10
17秒前
李庭福完成签到,获得积分20
18秒前
WWW完成签到 ,获得积分10
18秒前
追寻绮玉发布了新的文献求助10
19秒前
Dave发布了新的文献求助10
19秒前
张宝发布了新的文献求助10
19秒前
zxcvbnm发布了新的文献求助10
20秒前
21秒前
彭于晏应助rsy采纳,获得10
21秒前
英姑应助WHL采纳,获得10
22秒前
天真稀完成签到,获得积分10
24秒前
大脸猫4811发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431499
求助须知:如何正确求助?哪些是违规求助? 4544446
关于积分的说明 14192576
捐赠科研通 4463313
什么是DOI,文献DOI怎么找? 2446779
邀请新用户注册赠送积分活动 1438108
关于科研通互助平台的介绍 1414817