亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remote sensing image pan-sharpening via Pixel difference enhance

锐化 像素 地理 图像(数学) 计算机视觉 遥感 人工智能 地图学 计算机科学
作者
Xiaoxiao Feng,Li Wang,Zhiqi Zhang,Xueli Chang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 104045-104045
标识
DOI:10.1016/j.jag.2024.104045
摘要

Nowadays, embedding-based pan-sharpening networks aimed at fusing panchromatic (PAN) and multispectral (MS) images are abundant, yet their results still show spectral distortion and spatial fuzziness. In this paper, we design a multi-scale fusion structure to minimize the gap between the pan-sharpened image and the reference image progressively. Specifically, we proposed a method based on the scale difference between PAN and MS images, using a convolutional neural network embedding pixel difference enhanced module (PDEM) to obtain the pan-sharpened image and minimizing the losses from each scale. The network includes three scales, each scale contains the PDEM to generate the intermediate results until to the last scale which obtains the final pan-sharpened result. The designed PDEM extracts deep features from PAN and MS images, using different kernel sizes and receptive field scales to diversify the extracted information. Three-direction pixel difference convolutions (PDCs) are utilized to maintain and enhance the edge details of spatial information. The loss function is to sum up the mean square error and mean absolute error between the pan-sharpened image and the reference image at three scales. Extensive experiments suggest the proposed method outperforms state-of-the-art methods from visual and quantitative perspectives, and confirm the effectiveness of PDEM in extracting and retaining image information and edge enhancement. The high-level vision task experiments also show our method has good practical value for further applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
斯文败类应助端庄千青采纳,获得10
4秒前
量子星尘发布了新的文献求助10
6秒前
拿铁小笼包完成签到,获得积分10
6秒前
10秒前
细心的雨竹完成签到,获得积分10
11秒前
11秒前
嘻嘻完成签到,获得积分10
12秒前
青柠发布了新的文献求助10
16秒前
充电宝应助fzy采纳,获得10
17秒前
19秒前
吱吱吱吱发布了新的文献求助10
23秒前
清秀芝麻完成签到 ,获得积分10
27秒前
小四发布了新的文献求助20
27秒前
kangkang完成签到,获得积分10
27秒前
Jasper应助糖拌西红柿采纳,获得10
30秒前
mmyhn完成签到,获得积分10
33秒前
35秒前
苗条书桃完成签到,获得积分10
35秒前
科研通AI6应助殷楷霖采纳,获得10
36秒前
1717发布了新的文献求助10
38秒前
kmy完成签到 ,获得积分10
38秒前
Y26完成签到,获得积分10
41秒前
43秒前
43秒前
洁净的千凡完成签到 ,获得积分20
44秒前
小圭发布了新的文献求助10
47秒前
Ava应助科研通管家采纳,获得10
49秒前
Kiki发布了新的文献求助10
50秒前
科研通AI6应助幸运幸福采纳,获得10
51秒前
54秒前
小四完成签到,获得积分20
55秒前
59秒前
59秒前
59秒前
小二郎应助优秀星星采纳,获得10
1分钟前
今后应助可靠的寒风采纳,获得10
1分钟前
1分钟前
Kiki完成签到,获得积分10
1分钟前
fzy发布了新的文献求助10
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644428
求助须知:如何正确求助?哪些是违规求助? 4764178
关于积分的说明 15025100
捐赠科研通 4802856
什么是DOI,文献DOI怎么找? 2567622
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484790