Remote sensing image pan-sharpening via Pixel difference enhance

锐化 像素 地理 图像(数学) 计算机视觉 遥感 人工智能 地图学 计算机科学
作者
Xiaoxiao Feng,Li Wang,Zhiqi Zhang,Xueli Chang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 104045-104045
标识
DOI:10.1016/j.jag.2024.104045
摘要

Nowadays, embedding-based pan-sharpening networks aimed at fusing panchromatic (PAN) and multispectral (MS) images are abundant, yet their results still show spectral distortion and spatial fuzziness. In this paper, we design a multi-scale fusion structure to minimize the gap between the pan-sharpened image and the reference image progressively. Specifically, we proposed a method based on the scale difference between PAN and MS images, using a convolutional neural network embedding pixel difference enhanced module (PDEM) to obtain the pan-sharpened image and minimizing the losses from each scale. The network includes three scales, each scale contains the PDEM to generate the intermediate results until to the last scale which obtains the final pan-sharpened result. The designed PDEM extracts deep features from PAN and MS images, using different kernel sizes and receptive field scales to diversify the extracted information. Three-direction pixel difference convolutions (PDCs) are utilized to maintain and enhance the edge details of spatial information. The loss function is to sum up the mean square error and mean absolute error between the pan-sharpened image and the reference image at three scales. Extensive experiments suggest the proposed method outperforms state-of-the-art methods from visual and quantitative perspectives, and confirm the effectiveness of PDEM in extracting and retaining image information and edge enhancement. The high-level vision task experiments also show our method has good practical value for further applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
略略略发布了新的文献求助10
1秒前
852应助fishway采纳,获得10
2秒前
blue发布了新的文献求助10
3秒前
大气寻真发布了新的文献求助10
3秒前
3秒前
善良的樱完成签到 ,获得积分10
4秒前
尊敬的莹完成签到,获得积分10
5秒前
九方完成签到,获得积分10
5秒前
7秒前
唠叨的逍遥关注了科研通微信公众号
7秒前
cc发布了新的文献求助10
9秒前
9秒前
再见不难完成签到,获得积分10
10秒前
狗十七发布了新的文献求助10
11秒前
11秒前
xuuuuumin完成签到,获得积分10
12秒前
dzdznb完成签到,获得积分20
12秒前
飞飞完成签到,获得积分10
12秒前
WB87应助浆酱子采纳,获得10
12秒前
Gabriel发布了新的文献求助10
13秒前
yu发布了新的文献求助10
13秒前
fishway发布了新的文献求助10
13秒前
14秒前
15秒前
林夕发布了新的文献求助10
15秒前
17秒前
blue完成签到,获得积分10
19秒前
清爽的向南完成签到 ,获得积分10
19秒前
19秒前
lulu发布了新的文献求助10
20秒前
李健应助阳光沛柔采纳,获得10
20秒前
脑洞疼应助李燕伟采纳,获得10
20秒前
深情新之发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
宋佳珍完成签到,获得积分10
22秒前
悟空爱吃酥橙完成签到,获得积分10
22秒前
23秒前
李健应助小广采纳,获得10
23秒前
脑洞疼应助橙子0016采纳,获得10
23秒前
小杭76应助angelinazh采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430823
求助须知:如何正确求助?哪些是违规求助? 4543941
关于积分的说明 14189780
捐赠科研通 4462379
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437962
关于科研通互助平台的介绍 1414553