Remote sensing image pan-sharpening via Pixel difference enhance

锐化 像素 地理 图像(数学) 计算机视觉 遥感 人工智能 地图学 计算机科学
作者
Xiaoxiao Feng,Li Wang,Zhiqi Zhang,Xueli Chang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 104045-104045
标识
DOI:10.1016/j.jag.2024.104045
摘要

Nowadays, embedding-based pan-sharpening networks aimed at fusing panchromatic (PAN) and multispectral (MS) images are abundant, yet their results still show spectral distortion and spatial fuzziness. In this paper, we design a multi-scale fusion structure to minimize the gap between the pan-sharpened image and the reference image progressively. Specifically, we proposed a method based on the scale difference between PAN and MS images, using a convolutional neural network embedding pixel difference enhanced module (PDEM) to obtain the pan-sharpened image and minimizing the losses from each scale. The network includes three scales, each scale contains the PDEM to generate the intermediate results until to the last scale which obtains the final pan-sharpened result. The designed PDEM extracts deep features from PAN and MS images, using different kernel sizes and receptive field scales to diversify the extracted information. Three-direction pixel difference convolutions (PDCs) are utilized to maintain and enhance the edge details of spatial information. The loss function is to sum up the mean square error and mean absolute error between the pan-sharpened image and the reference image at three scales. Extensive experiments suggest the proposed method outperforms state-of-the-art methods from visual and quantitative perspectives, and confirm the effectiveness of PDEM in extracting and retaining image information and edge enhancement. The high-level vision task experiments also show our method has good practical value for further applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
buno应助张益发采纳,获得10
刚刚
1秒前
LQQ发布了新的文献求助10
1秒前
轻歌水越发布了新的文献求助10
1秒前
1秒前
Owen应助怕孤独的迎梦采纳,获得10
1秒前
霖尤发布了新的文献求助20
2秒前
2秒前
遇见完成签到,获得积分20
2秒前
尼古拉斯发布了新的文献求助10
3秒前
3秒前
在水一方应助HCT采纳,获得10
4秒前
hhl完成签到,获得积分10
4秒前
4秒前
Eukarya完成签到,获得积分10
4秒前
勿忘9451发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
zzz完成签到,获得积分10
6秒前
清脆苑博发布了新的文献求助10
6秒前
xuxuux完成签到,获得积分10
6秒前
7秒前
cc发布了新的文献求助10
7秒前
7秒前
ceeray23应助薄荷喵采纳,获得10
7秒前
在水一方应助小宇采纳,获得10
8秒前
4149发布了新的文献求助10
8秒前
8秒前
9秒前
无极微光应助123456采纳,获得20
10秒前
夕寸发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
英姑应助七点半采纳,获得10
11秒前
LYP发布了新的文献求助10
11秒前
11秒前
充电宝应助星星采纳,获得10
11秒前
刘海婷完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836