Remote sensing image pan-sharpening via Pixel difference enhance

锐化 像素 地理 图像(数学) 计算机视觉 遥感 人工智能 地图学 计算机科学
作者
Xiaoxiao Feng,Li Wang,Zhiqi Zhang,Xueli Chang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 104045-104045
标识
DOI:10.1016/j.jag.2024.104045
摘要

Nowadays, embedding-based pan-sharpening networks aimed at fusing panchromatic (PAN) and multispectral (MS) images are abundant, yet their results still show spectral distortion and spatial fuzziness. In this paper, we design a multi-scale fusion structure to minimize the gap between the pan-sharpened image and the reference image progressively. Specifically, we proposed a method based on the scale difference between PAN and MS images, using a convolutional neural network embedding pixel difference enhanced module (PDEM) to obtain the pan-sharpened image and minimizing the losses from each scale. The network includes three scales, each scale contains the PDEM to generate the intermediate results until to the last scale which obtains the final pan-sharpened result. The designed PDEM extracts deep features from PAN and MS images, using different kernel sizes and receptive field scales to diversify the extracted information. Three-direction pixel difference convolutions (PDCs) are utilized to maintain and enhance the edge details of spatial information. The loss function is to sum up the mean square error and mean absolute error between the pan-sharpened image and the reference image at three scales. Extensive experiments suggest the proposed method outperforms state-of-the-art methods from visual and quantitative perspectives, and confirm the effectiveness of PDEM in extracting and retaining image information and edge enhancement. The high-level vision task experiments also show our method has good practical value for further applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
易夜雨居发布了新的文献求助10
1秒前
大力的涛完成签到,获得积分10
1秒前
basepair发布了新的文献求助30
1秒前
星星完成签到,获得积分10
1秒前
longjiji发布了新的文献求助10
1秒前
1秒前
QinCaibin完成签到,获得积分10
1秒前
2秒前
Lucas应助Vicky采纳,获得10
2秒前
kks569完成签到,获得积分10
3秒前
FashionBoy应助Sylvia采纳,获得10
3秒前
吴迪完成签到,获得积分20
3秒前
yaya完成签到,获得积分20
4秒前
4秒前
wanna发布了新的文献求助10
5秒前
5秒前
5秒前
神勇惜筠完成签到,获得积分10
5秒前
ding应助syz采纳,获得10
6秒前
周凡淇发布了新的文献求助10
6秒前
小二黑发布了新的文献求助10
7秒前
嵇南露完成签到,获得积分10
7秒前
123发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
拓力库海完成签到,获得积分10
8秒前
8秒前
8秒前
li发布了新的文献求助10
8秒前
8秒前
大宝S欧D蜜应助aoer采纳,获得10
8秒前
aiomn完成签到,获得积分10
9秒前
铜锣烧完成签到 ,获得积分10
9秒前
10秒前
丘比特应助moffy采纳,获得10
10秒前
威武爆米花完成签到,获得积分10
10秒前
10秒前
芝士发布了新的文献求助10
10秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239649
求助须知:如何正确求助?哪些是违规求助? 4406942
关于积分的说明 13716567
捐赠科研通 4275445
什么是DOI,文献DOI怎么找? 2346001
邀请新用户注册赠送积分活动 1343148
关于科研通互助平台的介绍 1301201