Remote sensing image pan-sharpening via Pixel difference enhance

锐化 像素 地理 图像(数学) 计算机视觉 遥感 人工智能 地图学 计算机科学
作者
Xiaoxiao Feng,Li Wang,Zhiqi Zhang,Xueli Chang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 104045-104045
标识
DOI:10.1016/j.jag.2024.104045
摘要

Nowadays, embedding-based pan-sharpening networks aimed at fusing panchromatic (PAN) and multispectral (MS) images are abundant, yet their results still show spectral distortion and spatial fuzziness. In this paper, we design a multi-scale fusion structure to minimize the gap between the pan-sharpened image and the reference image progressively. Specifically, we proposed a method based on the scale difference between PAN and MS images, using a convolutional neural network embedding pixel difference enhanced module (PDEM) to obtain the pan-sharpened image and minimizing the losses from each scale. The network includes three scales, each scale contains the PDEM to generate the intermediate results until to the last scale which obtains the final pan-sharpened result. The designed PDEM extracts deep features from PAN and MS images, using different kernel sizes and receptive field scales to diversify the extracted information. Three-direction pixel difference convolutions (PDCs) are utilized to maintain and enhance the edge details of spatial information. The loss function is to sum up the mean square error and mean absolute error between the pan-sharpened image and the reference image at three scales. Extensive experiments suggest the proposed method outperforms state-of-the-art methods from visual and quantitative perspectives, and confirm the effectiveness of PDEM in extracting and retaining image information and edge enhancement. The high-level vision task experiments also show our method has good practical value for further applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助逍遥子采纳,获得10
1秒前
852应助逍遥子采纳,获得10
1秒前
1秒前
ChiariRay完成签到,获得积分10
1秒前
长柏完成签到 ,获得积分10
1秒前
酷波er应助ysta采纳,获得10
1秒前
Gloria的保镖完成签到 ,获得积分10
1秒前
2秒前
魁梧的仰发布了新的文献求助10
3秒前
道爷发布了新的文献求助10
3秒前
应急食品完成签到,获得积分10
3秒前
4秒前
关耳完成签到,获得积分10
4秒前
4秒前
4秒前
Channing_Ho完成签到,获得积分10
5秒前
大树十字坡完成签到,获得积分10
6秒前
星辉斑斓完成签到,获得积分10
6秒前
科研小趴菜完成签到,获得积分10
6秒前
6秒前
7秒前
qq完成签到,获得积分10
7秒前
故渊完成签到,获得积分10
7秒前
7秒前
ladysansan完成签到,获得积分10
8秒前
华仔应助爱爱精神境界采纳,获得10
9秒前
爆米花应助abysm采纳,获得10
9秒前
RATHER完成签到,获得积分10
10秒前
新手完成签到 ,获得积分10
10秒前
11秒前
恒星完成签到,获得积分10
11秒前
13秒前
ysta发布了新的文献求助10
13秒前
毒蝎King完成签到 ,获得积分10
13秒前
坚强胡萝卜完成签到,获得积分10
14秒前
大发明家完成签到,获得积分10
15秒前
古芍昂完成签到 ,获得积分10
15秒前
nana完成签到,获得积分20
15秒前
hahaha完成签到,获得积分10
16秒前
于是完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685844
关于积分的说明 14840076
捐赠科研通 4675267
什么是DOI,文献DOI怎么找? 2538559
邀请新用户注册赠送积分活动 1505668
关于科研通互助平台的介绍 1471141