Remote sensing image pan-sharpening via Pixel difference enhance

锐化 像素 地理 图像(数学) 计算机视觉 遥感 人工智能 地图学 计算机科学
作者
Xiaoxiao Feng,Li Wang,Zhiqi Zhang,Xueli Chang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 104045-104045
标识
DOI:10.1016/j.jag.2024.104045
摘要

Nowadays, embedding-based pan-sharpening networks aimed at fusing panchromatic (PAN) and multispectral (MS) images are abundant, yet their results still show spectral distortion and spatial fuzziness. In this paper, we design a multi-scale fusion structure to minimize the gap between the pan-sharpened image and the reference image progressively. Specifically, we proposed a method based on the scale difference between PAN and MS images, using a convolutional neural network embedding pixel difference enhanced module (PDEM) to obtain the pan-sharpened image and minimizing the losses from each scale. The network includes three scales, each scale contains the PDEM to generate the intermediate results until to the last scale which obtains the final pan-sharpened result. The designed PDEM extracts deep features from PAN and MS images, using different kernel sizes and receptive field scales to diversify the extracted information. Three-direction pixel difference convolutions (PDCs) are utilized to maintain and enhance the edge details of spatial information. The loss function is to sum up the mean square error and mean absolute error between the pan-sharpened image and the reference image at three scales. Extensive experiments suggest the proposed method outperforms state-of-the-art methods from visual and quantitative perspectives, and confirm the effectiveness of PDEM in extracting and retaining image information and edge enhancement. The high-level vision task experiments also show our method has good practical value for further applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助完美的海秋采纳,获得10
刚刚
哈瑞快跑发布了新的文献求助10
刚刚
1秒前
李朝富发布了新的文献求助10
1秒前
stephen完成签到,获得积分10
2秒前
晨雨完成签到,获得积分10
2秒前
天易发布了新的文献求助10
3秒前
HMTina发布了新的文献求助10
3秒前
4秒前
专注笑珊应助念心采纳,获得20
5秒前
Gilana应助自信的黑猫采纳,获得10
5秒前
孤独士晋发布了新的文献求助10
7秒前
8秒前
HMTina完成签到,获得积分20
10秒前
小米粒发布了新的文献求助10
10秒前
11秒前
11秒前
百步穿杨发布了新的文献求助10
12秒前
Jasper应助哈瑞快跑采纳,获得10
12秒前
活泼的夏旋完成签到 ,获得积分10
13秒前
是琳不是林完成签到,获得积分10
13秒前
zjl完成签到 ,获得积分10
14秒前
keflgfdm发布了新的文献求助20
14秒前
zho发布了新的文献求助10
14秒前
15秒前
XY完成签到,获得积分10
16秒前
微微发布了新的文献求助10
16秒前
在水一方应助wlw采纳,获得10
17秒前
17秒前
17秒前
故里有兮木完成签到,获得积分10
17秒前
namin完成签到,获得积分20
17秒前
17秒前
李健应助随机采纳,获得10
19秒前
namin发布了新的文献求助10
20秒前
20秒前
开心发布了新的文献求助10
21秒前
282387287完成签到,获得积分10
21秒前
21秒前
勤恳的猕猴桃完成签到 ,获得积分10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Sensory analysis — Methodology — Guidelines for the measurement of the performance of a quantitative descriptive sensory panel 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245962
求助须知:如何正确求助?哪些是违规求助? 2889582
关于积分的说明 8259253
捐赠科研通 2558026
什么是DOI,文献DOI怎么找? 1386905
科研通“疑难数据库(出版商)”最低求助积分说明 650340
邀请新用户注册赠送积分活动 626748