Remote sensing image pan-sharpening via Pixel difference enhance

锐化 像素 地理 图像(数学) 计算机视觉 遥感 人工智能 地图学 计算机科学
作者
Xiaoxiao Feng,Li Wang,Zhiqi Zhang,Xueli Chang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 104045-104045
标识
DOI:10.1016/j.jag.2024.104045
摘要

Nowadays, embedding-based pan-sharpening networks aimed at fusing panchromatic (PAN) and multispectral (MS) images are abundant, yet their results still show spectral distortion and spatial fuzziness. In this paper, we design a multi-scale fusion structure to minimize the gap between the pan-sharpened image and the reference image progressively. Specifically, we proposed a method based on the scale difference between PAN and MS images, using a convolutional neural network embedding pixel difference enhanced module (PDEM) to obtain the pan-sharpened image and minimizing the losses from each scale. The network includes three scales, each scale contains the PDEM to generate the intermediate results until to the last scale which obtains the final pan-sharpened result. The designed PDEM extracts deep features from PAN and MS images, using different kernel sizes and receptive field scales to diversify the extracted information. Three-direction pixel difference convolutions (PDCs) are utilized to maintain and enhance the edge details of spatial information. The loss function is to sum up the mean square error and mean absolute error between the pan-sharpened image and the reference image at three scales. Extensive experiments suggest the proposed method outperforms state-of-the-art methods from visual and quantitative perspectives, and confirm the effectiveness of PDEM in extracting and retaining image information and edge enhancement. The high-level vision task experiments also show our method has good practical value for further applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nPPERn发布了新的文献求助10
1秒前
我要瘦发布了新的文献求助10
1秒前
solobang发布了新的文献求助10
1秒前
Sean发布了新的文献求助10
1秒前
Harry完成签到,获得积分10
2秒前
yxy999完成签到,获得积分10
2秒前
年华发布了新的文献求助10
2秒前
WZH123456完成签到,获得积分10
3秒前
orixero应助大胆盼兰采纳,获得10
3秒前
4秒前
4秒前
陈某某完成签到,获得积分10
4秒前
卡皮巴丘完成签到 ,获得积分10
5秒前
周少完成签到,获得积分10
5秒前
陶一二完成签到,获得积分10
7秒前
7秒前
7秒前
DocZhao完成签到 ,获得积分10
8秒前
apt完成签到,获得积分10
8秒前
8秒前
Three完成签到,获得积分10
9秒前
如果多年后完成签到 ,获得积分10
9秒前
SYLH应助solobang采纳,获得10
10秒前
SYLH应助solobang采纳,获得10
10秒前
灰色与青完成签到,获得积分10
10秒前
852应助幸福胡萝卜采纳,获得10
10秒前
虞无声应助年华采纳,获得10
10秒前
11秒前
香菜发布了新的文献求助10
12秒前
hf发布了新的文献求助10
12秒前
14秒前
爱听歌长颈鹿完成签到,获得积分20
14秒前
852应助抓恐龙采纳,获得10
14秒前
15秒前
小小鱼完成签到,获得积分10
15秒前
15秒前
单薄的小鸽子完成签到,获得积分10
16秒前
17秒前
charon完成签到,获得积分20
17秒前
bkagyin应助fff采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678