Remote sensing image pan-sharpening via Pixel difference enhance

锐化 像素 地理 图像(数学) 计算机视觉 遥感 人工智能 地图学 计算机科学
作者
Xiaoxiao Feng,Li Wang,Zhiqi Zhang,Xueli Chang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 104045-104045
标识
DOI:10.1016/j.jag.2024.104045
摘要

Nowadays, embedding-based pan-sharpening networks aimed at fusing panchromatic (PAN) and multispectral (MS) images are abundant, yet their results still show spectral distortion and spatial fuzziness. In this paper, we design a multi-scale fusion structure to minimize the gap between the pan-sharpened image and the reference image progressively. Specifically, we proposed a method based on the scale difference between PAN and MS images, using a convolutional neural network embedding pixel difference enhanced module (PDEM) to obtain the pan-sharpened image and minimizing the losses from each scale. The network includes three scales, each scale contains the PDEM to generate the intermediate results until to the last scale which obtains the final pan-sharpened result. The designed PDEM extracts deep features from PAN and MS images, using different kernel sizes and receptive field scales to diversify the extracted information. Three-direction pixel difference convolutions (PDCs) are utilized to maintain and enhance the edge details of spatial information. The loss function is to sum up the mean square error and mean absolute error between the pan-sharpened image and the reference image at three scales. Extensive experiments suggest the proposed method outperforms state-of-the-art methods from visual and quantitative perspectives, and confirm the effectiveness of PDEM in extracting and retaining image information and edge enhancement. The high-level vision task experiments also show our method has good practical value for further applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CC完成签到,获得积分10
1秒前
1秒前
橙子发布了新的文献求助10
1秒前
义气代梅发布了新的文献求助10
1秒前
乔啡发布了新的文献求助10
2秒前
阿卡波比糖完成签到,获得积分10
2秒前
BINGO完成签到,获得积分10
5秒前
MiManchi发布了新的文献求助10
5秒前
李健应助超能力采纳,获得10
6秒前
Nicole完成签到,获得积分10
6秒前
桐桐应助正直的冷雁采纳,获得10
6秒前
丰富的南松完成签到,获得积分10
6秒前
7秒前
7秒前
9秒前
虚拟刺客完成签到 ,获得积分10
9秒前
hey应助小张z采纳,获得20
10秒前
yuzhuoWng完成签到,获得积分10
10秒前
Yuki完成签到,获得积分10
10秒前
10秒前
神华完成签到,获得积分10
10秒前
11秒前
ljz910005完成签到,获得积分10
11秒前
爆米花应助xiaohai1987采纳,获得10
11秒前
龙猫发布了新的文献求助10
11秒前
lilia完成签到,获得积分10
12秒前
12秒前
itharmony应助酷酷问薇采纳,获得10
13秒前
wlingke应助影叨叨采纳,获得30
13秒前
研友_n0kYwL发布了新的文献求助10
14秒前
绪安然应助袁淼采纳,获得10
14秒前
神华发布了新的文献求助10
14秒前
酷波er应助啊啊啊啊跃采纳,获得10
15秒前
566发布了新的文献求助10
16秒前
学渣完成签到 ,获得积分10
16秒前
16秒前
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618656
求助须知:如何正确求助?哪些是违规求助? 4703567
关于积分的说明 14922777
捐赠科研通 4758019
什么是DOI,文献DOI怎么找? 2550151
邀请新用户注册赠送积分活动 1512998
关于科研通互助平台的介绍 1474379