Remote sensing image pan-sharpening via Pixel difference enhance

锐化 像素 地理 图像(数学) 计算机视觉 遥感 人工智能 地图学 计算机科学
作者
Xiaoxiao Feng,Li Wang,Zhiqi Zhang,Xueli Chang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 104045-104045
标识
DOI:10.1016/j.jag.2024.104045
摘要

Nowadays, embedding-based pan-sharpening networks aimed at fusing panchromatic (PAN) and multispectral (MS) images are abundant, yet their results still show spectral distortion and spatial fuzziness. In this paper, we design a multi-scale fusion structure to minimize the gap between the pan-sharpened image and the reference image progressively. Specifically, we proposed a method based on the scale difference between PAN and MS images, using a convolutional neural network embedding pixel difference enhanced module (PDEM) to obtain the pan-sharpened image and minimizing the losses from each scale. The network includes three scales, each scale contains the PDEM to generate the intermediate results until to the last scale which obtains the final pan-sharpened result. The designed PDEM extracts deep features from PAN and MS images, using different kernel sizes and receptive field scales to diversify the extracted information. Three-direction pixel difference convolutions (PDCs) are utilized to maintain and enhance the edge details of spatial information. The loss function is to sum up the mean square error and mean absolute error between the pan-sharpened image and the reference image at three scales. Extensive experiments suggest the proposed method outperforms state-of-the-art methods from visual and quantitative perspectives, and confirm the effectiveness of PDEM in extracting and retaining image information and edge enhancement. The high-level vision task experiments also show our method has good practical value for further applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pyrene完成签到 ,获得积分10
刚刚
公冶菲鹰发布了新的文献求助10
刚刚
热热完成签到,获得积分10
刚刚
zzz完成签到 ,获得积分10
刚刚
Jared应助黎黎采纳,获得10
1秒前
1秒前
1秒前
斯文败类应助XXXXX采纳,获得10
1秒前
阿芜完成签到,获得积分10
2秒前
LV发布了新的文献求助10
2秒前
qiuxiali123发布了新的文献求助10
2秒前
2秒前
CodeCraft应助miao采纳,获得10
2秒前
2秒前
LSW完成签到 ,获得积分10
3秒前
顾矜应助IF采纳,获得30
4秒前
咸鱼咸完成签到,获得积分10
4秒前
Kauio发布了新的文献求助10
4秒前
幸运鹅47完成签到,获得积分10
4秒前
orixero应助niagvbjkhsdfvc采纳,获得10
4秒前
hanyahui完成签到,获得积分10
5秒前
eliot完成签到,获得积分10
5秒前
5秒前
Zhao_Kai发布了新的文献求助10
5秒前
爆米花应助而风不止采纳,获得10
5秒前
坚强的紫菜完成签到,获得积分10
5秒前
熊风发布了新的文献求助10
6秒前
核桃完成签到,获得积分10
6秒前
see完成签到,获得积分10
6秒前
栀初完成签到,获得积分10
6秒前
LT发布了新的文献求助10
7秒前
7秒前
8秒前
热心市民余先生完成签到,获得积分10
8秒前
乐乐应助夕荀采纳,获得10
9秒前
无限小霜完成签到,获得积分10
9秒前
DreamMaker应助LV采纳,获得10
9秒前
星辰大海应助LV采纳,获得30
9秒前
9秒前
赘婿应助酥酥脆采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005