自愈水凝胶
鉴定(生物学)
材料科学
纳米技术
化学
化学工程
工程类
高分子化学
生物
植物
作者
Wanqing Zou,Yingxin Zhou,Sheng Zhong,Feng Liao,Jing Lü,Luyong Zhang,Duanping Sun
标识
DOI:10.1016/j.cej.2024.154945
摘要
Wound healing poses a significant challenge because of prolonged treatment and compromised tissue regeneration caused by bacterial infections. Timely and efficient wound monitoring strategies are urgently needed to assess wound progression and healing in real time. To address this, we present an intelligent theranostic hydrogel system based on dual-site biomimetic FeNi metal–organic frameworks (MOFs) that enables intelligent wound pH monitoring and effective prevention of infection. Notably, the quasi-MOFs among the pristine bimetallic FeNi-MOFs and their derivatives demonstrate remarkable performance in mimicking superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, along with exceptional stability. The synthesized MOF hydrogels act as wound dressings for monitoring wound status and promoting healing. By incorporating the quasi-MOF and a pH indicator (phenol red) into the hydrogel, the hybrid system allows accurate pH detection, reflecting dynamic wound conditions. Furthermore, visual changes captured by smartphones provide real-time signals for remote assessment of wound pH, facilitating precise antimicrobial therapy and on-demand pH monitoring. This multifunctional theranostic hydrogel represents a significant advancement in the development and optimization of MOF hydrogels, offering a platform for efficient wound healing and comprehensive wound assessment.
科研通智能强力驱动
Strongly Powered by AbleSci AI