Confidence Region Identification and Contour Detection in MRI Image

感兴趣区域 比例(比率) 鉴定(生物学) 置信区间 能见度 等高线 强度(物理) 阶段(地层学) 人工智能 模式识别(心理学) 计算机科学 地质学 数学 物理 统计 光学 地图学 生物 地理 古生物学 植物
作者
Khurram Ejaz,Muhammad Arif,Mohd Shafry Mohd Rahim,Diana Izdrui,Maria Daniela Crăciun,Oana Geman
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-13 被引量:3
标识
DOI:10.1155/2022/5898479
摘要

Tumour region extraction (RE) method identifies the area of interest in MR imaging as it also highlights tumour boundaries. Some other intensities are existing, they are not visible but have their existence in region, and this region is called growing region. Such region is to be tumour region. Due to the variation of intensities in MRI images, tumour visibility becomes uncleared. Tumour intensity variations (tumour tissues) mix with normal brain tissues. In the light of above circumstance, tumour growing region becomes challenge. The goal of work is to extract the region of interest with confidence. The objective of the study is to develop the region of interest of brain tumour MRI image method by using confidence score for identifying the variation of intensity. The significance of work is based on identification of region of interest (tumour region). Confidence score is measured through pattern of intensities of MRI image. Similar patterns of brain tumour intensities are identified. Each pattern of intensities is adjusted with certain scale, and then biggest blob is analysed. Various biggest area blobs are combined, and resultant biggest blob is formed. In fact, resultant area blob is a combination of different patterns. Each pattern is assigned with particular colour. These colours highlight the growing region. Further, a contour is detected around the tumour boundaries. With combination of region scale fitting and contour detection (CD), tumour boundaries are further separated from normal tissues. Hence, the confidence score (CS) is formed from CD. CS is further converted to confidence region (CR). Conversion to CR is performed though confidence interval (CI). CI is based on defined conditions. In such conditions, different probabilities are considered. Probability identifies the region. Source of region formation is pixels; these pixels highlight tumour core significantly. This CR is obtained through checking standard deviation and statistical evaluation using confidence interval. Hence, region-of-interest pixels are identifying the CR. CR is evaluated through 97% Dice over index (DOI), 94% Jacquard, MSE 1.24, and PSNR 17.45. Value of testing parameter from benchmark study was JI, DOI, and MSE, PSNR : JI was 31.5%, DOI was 47.3%, MSE was 2.5 dB, and PSNR was 40 dB. The parameters are measured for the complex images; contribution parameter classifies the mean pixel values and deviating pixel values, and the classification of the pixel value is like to be termed as intensities. Mentioned classification extracts the variation of intensity pixels accurately; then, algorithm is highlighting the region as compared to the normal tumour cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈完成签到,获得积分10
1秒前
佳小佳发布了新的文献求助30
2秒前
2秒前
彭于晏应助半分青蓝采纳,获得10
2秒前
橘子石榴完成签到 ,获得积分10
2秒前
今后应助echo采纳,获得10
4秒前
chriswtr发布了新的文献求助50
6秒前
斑点发布了新的文献求助10
7秒前
木樨完成签到,获得积分10
11秒前
务实的乌冬面完成签到,获得积分20
13秒前
dbq完成签到 ,获得积分10
13秒前
15秒前
Junlei完成签到,获得积分10
15秒前
16秒前
CodeCraft应助parpate采纳,获得10
16秒前
chriswtr完成签到,获得积分10
17秒前
18秒前
18秒前
粥小周发布了新的文献求助10
19秒前
20秒前
领导范儿应助羊青丝采纳,获得10
21秒前
无聊完成签到,获得积分10
21秒前
碧蓝帅哥发布了新的文献求助10
21秒前
一木发布了新的文献求助20
22秒前
今后应助无Wen3采纳,获得10
24秒前
钰钰发布了新的文献求助10
24秒前
25秒前
单薄树叶完成签到,获得积分10
25秒前
25秒前
25秒前
26秒前
parpate发布了新的文献求助10
27秒前
FATYE发布了新的文献求助10
29秒前
echo发布了新的文献求助10
30秒前
Lucky发布了新的文献求助10
31秒前
echo完成签到,获得积分10
34秒前
36秒前
zz发布了新的文献求助30
38秒前
戈惜完成签到 ,获得积分10
39秒前
学术大白完成签到 ,获得积分10
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572296
求助须知:如何正确求助?哪些是违规求助? 3142501
关于积分的说明 9448015
捐赠科研通 2843973
什么是DOI,文献DOI怎么找? 1563103
邀请新用户注册赠送积分活动 731630
科研通“疑难数据库(出版商)”最低求助积分说明 718640