Confidence Region Identification and Contour Detection in MRI Image

感兴趣区域 比例(比率) 鉴定(生物学) 置信区间 能见度 等高线 强度(物理) 阶段(地层学) 人工智能 模式识别(心理学) 计算机科学 地质学 数学 物理 统计 光学 地图学 生物 地理 古生物学 植物
作者
Khurram Ejaz,Muhammad Arif,Mohd Shafry Mohd Rahim,Diana Izdrui,Maria Daniela Crăciun,Oana Geman
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-13 被引量:3
标识
DOI:10.1155/2022/5898479
摘要

Tumour region extraction (RE) method identifies the area of interest in MR imaging as it also highlights tumour boundaries. Some other intensities are existing, they are not visible but have their existence in region, and this region is called growing region. Such region is to be tumour region. Due to the variation of intensities in MRI images, tumour visibility becomes uncleared. Tumour intensity variations (tumour tissues) mix with normal brain tissues. In the light of above circumstance, tumour growing region becomes challenge. The goal of work is to extract the region of interest with confidence. The objective of the study is to develop the region of interest of brain tumour MRI image method by using confidence score for identifying the variation of intensity. The significance of work is based on identification of region of interest (tumour region). Confidence score is measured through pattern of intensities of MRI image. Similar patterns of brain tumour intensities are identified. Each pattern of intensities is adjusted with certain scale, and then biggest blob is analysed. Various biggest area blobs are combined, and resultant biggest blob is formed. In fact, resultant area blob is a combination of different patterns. Each pattern is assigned with particular colour. These colours highlight the growing region. Further, a contour is detected around the tumour boundaries. With combination of region scale fitting and contour detection (CD), tumour boundaries are further separated from normal tissues. Hence, the confidence score (CS) is formed from CD. CS is further converted to confidence region (CR). Conversion to CR is performed though confidence interval (CI). CI is based on defined conditions. In such conditions, different probabilities are considered. Probability identifies the region. Source of region formation is pixels; these pixels highlight tumour core significantly. This CR is obtained through checking standard deviation and statistical evaluation using confidence interval. Hence, region-of-interest pixels are identifying the CR. CR is evaluated through 97% Dice over index (DOI), 94% Jacquard, MSE 1.24, and PSNR 17.45. Value of testing parameter from benchmark study was JI, DOI, and MSE, PSNR : JI was 31.5%, DOI was 47.3%, MSE was 2.5 dB, and PSNR was 40 dB. The parameters are measured for the complex images; contribution parameter classifies the mean pixel values and deviating pixel values, and the classification of the pixel value is like to be termed as intensities. Mentioned classification extracts the variation of intensity pixels accurately; then, algorithm is highlighting the region as compared to the normal tumour cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fiona完成签到,获得积分10
刚刚
PaoPao发布了新的文献求助10
刚刚
¥#¥-11发布了新的文献求助10
刚刚
科研通AI5应助和花花采纳,获得10
刚刚
yellow完成签到 ,获得积分10
刚刚
1秒前
晴悦发布了新的文献求助10
1秒前
1秒前
Owen应助xiao.yang采纳,获得10
1秒前
谨慎飞丹完成签到 ,获得积分10
3秒前
Jeffrey完成签到,获得积分10
3秒前
dropwater完成签到,获得积分10
4秒前
牧析山发布了新的文献求助10
4秒前
4秒前
MHJJJ发布了新的文献求助30
4秒前
微笑完成签到,获得积分10
5秒前
闪闪纸飞机完成签到,获得积分10
5秒前
6秒前
Nextone完成签到,获得积分10
6秒前
赘婿应助疯狂的小蘑菇采纳,获得30
7秒前
123完成签到,获得积分10
7秒前
Akim应助niekyang采纳,获得10
7秒前
实验室扛把子完成签到,获得积分10
8秒前
舒心的钻石完成签到,获得积分10
9秒前
10秒前
11秒前
右旋王小二完成签到,获得积分10
11秒前
123发布了新的文献求助30
12秒前
12秒前
酷酷宝马发布了新的文献求助10
12秒前
12秒前
13秒前
15秒前
英俊的铭应助流浪采纳,获得10
15秒前
16秒前
和花花发布了新的文献求助10
16秒前
小魏哥哥发布了新的文献求助10
17秒前
自然函完成签到,获得积分10
18秒前
centlay发布了新的文献求助10
18秒前
小肆完成签到 ,获得积分10
19秒前
高分求助中
Comparative Anatomy of the Vertebrates 9th 3000
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571872
求助须知:如何正确求助?哪些是违规求助? 3142287
关于积分的说明 9446687
捐赠科研通 2843683
什么是DOI,文献DOI怎么找? 1562971
邀请新用户注册赠送积分活动 731530
科研通“疑难数据库(出版商)”最低求助积分说明 718557