Revenue-Sharing Allocation Strategies for Two-Sided Media Platforms: Pro-Rata vs. User-Centric

收入 计算机科学 背包问题 利润(经济学) 集合(抽象数据类型) 运筹学 经济 微观经济学 算法 数学 财务 程序设计语言
作者
Saeed Alaei,Ali Makhdoumi,Azarakhsh Malekian,Saša Pekeč
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (12): 8699-8721 被引量:32
标识
DOI:10.1287/mnsc.2022.4307
摘要

We consider a two-sided streaming service platform that generates revenues by charging users a subscription fee for unlimited access to the content and compensates content providers (artists) through a revenue-sharing allocation rule. Platform users are heterogeneous in both their overall consumption and the distribution of their consumption over different artists. We study two primary revenue allocation rules used by market-leading music streaming platforms—pro-rata and user-centric. With pro-rata, artists are paid proportionally to their share of the overall streaming volume, whereas with user-centric, each user’s subscription fee is divided proportionally among artists based on the consumption of that user. We characterize when these two allocation rules can sustain a set of artists on the platform and compare them from both the platform’s and the artists’ perspectives. In particular, we show that, despite the cross-subsidization between low- and high-streaming-volume users, the pro-rata rule can be preferred by both the platform and the artists. Furthermore, the platform’s problem of selecting an optimal portfolio of artists is NP-complete. However, by establishing connections to the knapsack problem, we develop a polynomial time approximation scheme (PTAS) for the optimal platform’s profit. In addition to determining the platform’s optimal revenue allocation rule in the class of pro-rata and user-centric rules, we consider the optimal revenue allocation rule in the class of arbitrary rules. Building on duality theory, we develop a polynomial time algorithm that outputs a set of artists so that the platform’s profit is within a single artist’s revenue from the optimal profit. This paper was accepted by Gabriel Weintraub, revenue management and market analytics. Supplemental Material: The online appendices are available at https://doi.org/10.1287/mnsc.2022.4307 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
计科通发布了新的文献求助10
刚刚
刚刚
gaogao发布了新的文献求助10
1秒前
马康辉发布了新的文献求助30
1秒前
2秒前
科研通AI5应助abc采纳,获得10
2秒前
3秒前
4秒前
fixing发布了新的文献求助10
4秒前
耿教授发布了新的文献求助10
6秒前
6秒前
焦立超发布了新的文献求助10
7秒前
Hexagram发布了新的文献求助10
7秒前
星辰大海应助俏皮的白柏采纳,获得10
9秒前
Teragous发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
蒋蒋发布了新的文献求助100
11秒前
聪明紫山发布了新的文献求助10
14秒前
14秒前
gaogao完成签到,获得积分10
15秒前
适不适完成签到,获得积分10
15秒前
完美世界应助勤恳的宛菡采纳,获得10
16秒前
16秒前
CHENG_2025应助hopewin2024采纳,获得15
16秒前
小狗熊吖i发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
我是科研狗完成签到,获得积分10
17秒前
Hello应助蛰伏的小宇宙采纳,获得10
17秒前
情怀应助风中的青采纳,获得10
17秒前
19秒前
充电宝应助houxy采纳,获得10
20秒前
聪明紫山完成签到,获得积分10
20秒前
21秒前
Doc邓爱科研完成签到,获得积分10
21秒前
22秒前
阿米尔给阿米尔的求助进行了留言
22秒前
Lny应助耿教授采纳,获得10
22秒前
研友_84WJXZ发布了新的文献求助10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214