Spatial heterogeneity of river effects on PM2.5 pollutants in waterfront neighborhoods based on mobile monitoring

环境科学 小气候 空气质量指数 污染物 污染 地理加权回归模型 空气污染 空间异质性 微粒 水文学(农业) 地理 气象学 生态学 地质学 统计 数学 岩土工程 考古 生物
作者
Jiangying Xu,Mengyang Liu,Hong Chen
出处
期刊:Atmospheric Pollution Research [Elsevier]
卷期号:13 (9): 101539-101539 被引量:5
标识
DOI:10.1016/j.apr.2022.101539
摘要

Concentrations of airborne particulate matter (PM) are influenced by land cover types. Water bodies in cities can influence the spatial distribution of air pollution by altering the microclimate. However, the influence of water bodies on PM2.5 concentrations is complex and requires further exploration, especially at the microscale. In this study, a geographically weighted regression (GWR) model was constructed to explore the spatially heterogeneous effect of a river on the PM2.5 concentrations in nearby riverside neighborhoods using mobile monitoring in Wuhan. The results showed that the GWR model was applicable at the neighborhood scale and had a good explanatory performance for PM2.5 concentrations, with a higher R2 (0.71). The river had multiple effects on the PM2.5 concentrations in the riverfront neighborhoods and strongly affected the air quality in neighborhoods within an 800 m distance due to wind infiltration, with the strongest effect at a 500–700 m distance. Moreover, considering spatial nonstationarity, the effect of the large river on street-level air quality largely depended on its effect on wind, and good ventilation conditions could amplify that effect. Commercial, road intersections, second-level roads and parks were identified as sensitive environmental factors affecting the river's influence on PM2.5 concentrations. In addition, urban parks had a greater mitigating effect on PM2.5 pollution than did water bodies in this study. These results help to clarify the impact of rivers on air quality and provide a theoretical basis for urban design to mitigate PM2.5 pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澜生发布了新的文献求助10
刚刚
leekle完成签到,获得积分10
1秒前
shengChen发布了新的文献求助10
1秒前
自信鞯发布了新的文献求助10
2秒前
江北小赵完成签到,获得积分10
2秒前
2秒前
2秒前
clock完成签到 ,获得积分10
2秒前
虫二先生完成签到 ,获得积分10
2秒前
甜甜的难敌完成签到,获得积分10
3秒前
3秒前
4秒前
小潘同学完成签到,获得积分10
4秒前
4秒前
科研通AI5应助传统的海露采纳,获得10
5秒前
学术刘亦菲完成签到,获得积分10
5秒前
成就的烧鹅完成签到,获得积分20
5秒前
6秒前
dd发布了新的文献求助10
6秒前
luoshi应助leon采纳,获得30
7秒前
7秒前
wang完成签到,获得积分10
7秒前
可爱的函函应助hu采纳,获得10
7秒前
7秒前
我测你码关注了科研通微信公众号
8秒前
下课了吧发布了新的文献求助10
8秒前
jy发布了新的文献求助10
8秒前
绘梨衣完成签到,获得积分10
9秒前
数据线完成签到,获得积分10
9秒前
完美世界应助甜甜的难敌采纳,获得30
10秒前
满堂花醉三千客完成签到 ,获得积分10
10秒前
10秒前
10秒前
gao完成签到,获得积分10
11秒前
LiuRuizhe完成签到,获得积分10
11秒前
绘梨衣发布了新的文献求助10
11秒前
11秒前
12秒前
淡定紫菱发布了新的文献求助10
13秒前
李繁蕊发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794