亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A machine learning methodology for the generation of a parameterization of the hydroxyl radical

羟基自由基 甲烷 对流层 灵敏度(控制系统) 计算机科学 化学 气象学 算法 生物系统 激进的 有机化学 物理 电子工程 工程类 生物
作者
Daniel C. Anderson,Melanie B. Follette‐Cook,Sarah A. Strode,Julie M. Nicely,Junhua Liu,Peter D. Ivatt,B. N. Duncan
出处
期刊:Geoscientific Model Development [Copernicus Publications]
卷期号:15 (16): 6341-6358 被引量:12
标识
DOI:10.5194/gmd-15-6341-2022
摘要

Abstract. We present a methodology that uses gradient-boosted regression trees (a machine learning technique) and a full-chemistry simulation (i.e., training dataset) from a chemistry–climate model (CCM) to efficiently generate a parameterization of tropospheric hydroxyl radical (OH) that is a function of chemical, dynamical, and solar irradiance variables. This surrogate model of OH is designed to be integrated into a CCM and allow for computationally efficient simulation of nonlinear feedbacks between OH and tropospheric constituents that have loss by reaction with OH as their primary sinks (e.g., carbon monoxide (CO), methane (CH4), volatile organic compounds (VOCs)). Such a model framework is advantageous for studies that require multi-decadal simulations of CH4 or multi-year sensitivity simulations to understand the causes of trends and variations of CO and CH4. To allow the user to easily target the training dataset towards a desired application, we are outlining a methodology to generate a parameterization of OH and not presenting an “off-the-shelf” version of a parameterization to be incorporated into a CCM. This provides for the relatively easy creation of a new parameterization in response to, for example, changes in research goals or the underlying CCM chemistry and/or dynamics schemes. We show that a sample parameterization of OH generated from a CCM simulation is able to reproduce OH concentrations with a normalized root-mean-square error of approximately 5 % and capture the global mean methane lifetime within approximately 1 %. Our calculated accuracy of the parameterization assumes inputs being within the bounds of the training dataset. Large excursions from these bounds will likely decrease the overall accuracy. However, we show that the sample parameterization predicts large deviations in OH for an El Niño event that was not part of the training dataset and that the spatial distribution and strength of these deviations are consistent with the event. This result gives confidence in the fidelity of a parameterization developed with our methodology to simulate the spatial and temporal responses of OH to perturbations from large variations in the chemical, dynamical, and solar irradiance drivers of OH. In addition, we discuss how two machine learning metrics, Gain feature importance and Shapley additive explanations values, indicate that the behavior of a parameterization of OH generally accords with our understanding of OH chemistry, even though there are no physics- or chemistry-based constraints on the parameterization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴实草莓发布了新的文献求助10
2秒前
白华苍松发布了新的文献求助10
12秒前
江姜酱先生完成签到,获得积分10
23秒前
yezio完成签到 ,获得积分10
40秒前
47秒前
Lucas应助可爱的乐松采纳,获得10
1分钟前
1分钟前
1分钟前
hunbaekkkkk完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
白华苍松发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助tt采纳,获得10
1分钟前
1分钟前
1分钟前
tt发布了新的文献求助10
2分钟前
2分钟前
2分钟前
xin发布了新的文献求助10
2分钟前
米饭儿完成签到 ,获得积分10
2分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
2分钟前
科研通AI6应助xin采纳,获得30
2分钟前
2分钟前
百里幻竹发布了新的文献求助10
3分钟前
Shicheng完成签到,获得积分10
3分钟前
3分钟前
yuon发布了新的文献求助10
3分钟前
3分钟前
Lucas应助tt采纳,获得10
3分钟前
李爱国应助Jerry采纳,获得10
3分钟前
3分钟前
浮游应助zhangyuanyue1234采纳,获得10
3分钟前
3分钟前
白华苍松发布了新的文献求助10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
领导范儿应助TZMY采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538682
求助须知:如何正确求助?哪些是违规求助? 4625719
关于积分的说明 14596769
捐赠科研通 4566398
什么是DOI,文献DOI怎么找? 2503240
邀请新用户注册赠送积分活动 1481365
关于科研通互助平台的介绍 1452725