A machine learning methodology for the generation of a parameterization of the hydroxyl radical

羟基自由基 甲烷 对流层 灵敏度(控制系统) 计算机科学 化学 气象学 算法 生物系统 激进的 有机化学 物理 电子工程 工程类 生物
作者
Daniel C. Anderson,Melanie B. Follette‐Cook,Sarah A. Strode,Julie M. Nicely,Junhua Liu,Peter D. Ivatt,B. N. Duncan
出处
期刊:Geoscientific Model Development 卷期号:15 (16): 6341-6358 被引量:12
标识
DOI:10.5194/gmd-15-6341-2022
摘要

Abstract. We present a methodology that uses gradient-boosted regression trees (a machine learning technique) and a full-chemistry simulation (i.e., training dataset) from a chemistry–climate model (CCM) to efficiently generate a parameterization of tropospheric hydroxyl radical (OH) that is a function of chemical, dynamical, and solar irradiance variables. This surrogate model of OH is designed to be integrated into a CCM and allow for computationally efficient simulation of nonlinear feedbacks between OH and tropospheric constituents that have loss by reaction with OH as their primary sinks (e.g., carbon monoxide (CO), methane (CH4), volatile organic compounds (VOCs)). Such a model framework is advantageous for studies that require multi-decadal simulations of CH4 or multi-year sensitivity simulations to understand the causes of trends and variations of CO and CH4. To allow the user to easily target the training dataset towards a desired application, we are outlining a methodology to generate a parameterization of OH and not presenting an “off-the-shelf” version of a parameterization to be incorporated into a CCM. This provides for the relatively easy creation of a new parameterization in response to, for example, changes in research goals or the underlying CCM chemistry and/or dynamics schemes. We show that a sample parameterization of OH generated from a CCM simulation is able to reproduce OH concentrations with a normalized root-mean-square error of approximately 5 % and capture the global mean methane lifetime within approximately 1 %. Our calculated accuracy of the parameterization assumes inputs being within the bounds of the training dataset. Large excursions from these bounds will likely decrease the overall accuracy. However, we show that the sample parameterization predicts large deviations in OH for an El Niño event that was not part of the training dataset and that the spatial distribution and strength of these deviations are consistent with the event. This result gives confidence in the fidelity of a parameterization developed with our methodology to simulate the spatial and temporal responses of OH to perturbations from large variations in the chemical, dynamical, and solar irradiance drivers of OH. In addition, we discuss how two machine learning metrics, Gain feature importance and Shapley additive explanations values, indicate that the behavior of a parameterization of OH generally accords with our understanding of OH chemistry, even though there are no physics- or chemistry-based constraints on the parameterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cpuczy发布了新的文献求助10
2秒前
ROGER完成签到,获得积分10
3秒前
pipi应助自由的水卉采纳,获得10
5秒前
6秒前
6秒前
占稚晴完成签到 ,获得积分10
7秒前
kx完成签到,获得积分10
8秒前
科目三应助喜欢月亮采纳,获得10
8秒前
去去完成签到 ,获得积分10
9秒前
nczpf2010发布了新的文献求助10
9秒前
英俊的铭应助NJY采纳,获得10
10秒前
爱学习发布了新的文献求助10
11秒前
阿嘎普莱特完成签到,获得积分10
12秒前
快乐天荷完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
英姑应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
杨等等应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得30
15秒前
小马甲应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得30
16秒前
Ava应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
wwz应助科研通管家采纳,获得10
16秒前
16秒前
美好乐松应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
小马甲应助单纯面包采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137412
求助须知:如何正确求助?哪些是违规求助? 2788462
关于积分的说明 7786566
捐赠科研通 2444645
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625712
版权声明 601023