A machine learning methodology for the generation of a parameterization of the hydroxyl radical

羟基自由基 甲烷 对流层 灵敏度(控制系统) 计算机科学 化学 气象学 算法 生物系统 激进的 有机化学 物理 电子工程 生物 工程类
作者
Daniel C. Anderson,Melanie B. Follette‐Cook,Sarah A. Strode,Julie M. Nicely,Junhua Liu,Peter D. Ivatt,B. N. Duncan
出处
期刊:Geoscientific Model Development [Copernicus Publications]
卷期号:15 (16): 6341-6358 被引量:12
标识
DOI:10.5194/gmd-15-6341-2022
摘要

Abstract. We present a methodology that uses gradient-boosted regression trees (a machine learning technique) and a full-chemistry simulation (i.e., training dataset) from a chemistry–climate model (CCM) to efficiently generate a parameterization of tropospheric hydroxyl radical (OH) that is a function of chemical, dynamical, and solar irradiance variables. This surrogate model of OH is designed to be integrated into a CCM and allow for computationally efficient simulation of nonlinear feedbacks between OH and tropospheric constituents that have loss by reaction with OH as their primary sinks (e.g., carbon monoxide (CO), methane (CH4), volatile organic compounds (VOCs)). Such a model framework is advantageous for studies that require multi-decadal simulations of CH4 or multi-year sensitivity simulations to understand the causes of trends and variations of CO and CH4. To allow the user to easily target the training dataset towards a desired application, we are outlining a methodology to generate a parameterization of OH and not presenting an “off-the-shelf” version of a parameterization to be incorporated into a CCM. This provides for the relatively easy creation of a new parameterization in response to, for example, changes in research goals or the underlying CCM chemistry and/or dynamics schemes. We show that a sample parameterization of OH generated from a CCM simulation is able to reproduce OH concentrations with a normalized root-mean-square error of approximately 5 % and capture the global mean methane lifetime within approximately 1 %. Our calculated accuracy of the parameterization assumes inputs being within the bounds of the training dataset. Large excursions from these bounds will likely decrease the overall accuracy. However, we show that the sample parameterization predicts large deviations in OH for an El Niño event that was not part of the training dataset and that the spatial distribution and strength of these deviations are consistent with the event. This result gives confidence in the fidelity of a parameterization developed with our methodology to simulate the spatial and temporal responses of OH to perturbations from large variations in the chemical, dynamical, and solar irradiance drivers of OH. In addition, we discuss how two machine learning metrics, Gain feature importance and Shapley additive explanations values, indicate that the behavior of a parameterization of OH generally accords with our understanding of OH chemistry, even though there are no physics- or chemistry-based constraints on the parameterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiaqiaqia完成签到,获得积分10
1秒前
1秒前
1秒前
mumu发布了新的文献求助50
1秒前
田様应助315947采纳,获得10
2秒前
2秒前
xiongqi完成签到,获得积分10
2秒前
小豆豆应助尊敬的扬采纳,获得10
2秒前
3秒前
XXXX发布了新的文献求助10
3秒前
凯凯发布了新的文献求助10
3秒前
qiaqiaqia发布了新的文献求助10
3秒前
赘婿应助www采纳,获得10
4秒前
4秒前
ttlash发布了新的文献求助10
4秒前
123fordream完成签到,获得积分10
5秒前
天天快乐应助二十五采纳,获得10
5秒前
5秒前
无辜玉米完成签到,获得积分10
6秒前
酷波er应助舒适的尔容采纳,获得10
7秒前
7秒前
7秒前
7秒前
Li发布了新的文献求助10
7秒前
Amanda完成签到,获得积分10
7秒前
淡然雪枫发布了新的文献求助10
7秒前
8秒前
梦梦发布了新的文献求助10
8秒前
8秒前
只吃饭不洗碗完成签到,获得积分10
8秒前
NexusExplorer应助YU采纳,获得10
8秒前
NexusExplorer应助飞云采纳,获得10
9秒前
LR发布了新的文献求助10
9秒前
多情的正豪完成签到,获得积分10
9秒前
Lucas发布了新的文献求助30
9秒前
9秒前
LLL发布了新的文献求助10
10秒前
亚稳态发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969383
求助须知:如何正确求助?哪些是违规求助? 3514211
关于积分的说明 11172730
捐赠科研通 3249476
什么是DOI,文献DOI怎么找? 1794909
邀请新用户注册赠送积分活动 875441
科研通“疑难数据库(出版商)”最低求助积分说明 804827