A machine learning methodology for the generation of a parameterization of the hydroxyl radical

羟基自由基 甲烷 对流层 灵敏度(控制系统) 计算机科学 化学 气象学 算法 生物系统 激进的 有机化学 物理 电子工程 生物 工程类
作者
Daniel C. Anderson,Melanie B. Follette‐Cook,Sarah A. Strode,Julie M. Nicely,Junhua Liu,Peter D. Ivatt,B. N. Duncan
出处
期刊:Geoscientific Model Development [Copernicus Publications]
卷期号:15 (16): 6341-6358 被引量:12
标识
DOI:10.5194/gmd-15-6341-2022
摘要

Abstract. We present a methodology that uses gradient-boosted regression trees (a machine learning technique) and a full-chemistry simulation (i.e., training dataset) from a chemistry–climate model (CCM) to efficiently generate a parameterization of tropospheric hydroxyl radical (OH) that is a function of chemical, dynamical, and solar irradiance variables. This surrogate model of OH is designed to be integrated into a CCM and allow for computationally efficient simulation of nonlinear feedbacks between OH and tropospheric constituents that have loss by reaction with OH as their primary sinks (e.g., carbon monoxide (CO), methane (CH4), volatile organic compounds (VOCs)). Such a model framework is advantageous for studies that require multi-decadal simulations of CH4 or multi-year sensitivity simulations to understand the causes of trends and variations of CO and CH4. To allow the user to easily target the training dataset towards a desired application, we are outlining a methodology to generate a parameterization of OH and not presenting an “off-the-shelf” version of a parameterization to be incorporated into a CCM. This provides for the relatively easy creation of a new parameterization in response to, for example, changes in research goals or the underlying CCM chemistry and/or dynamics schemes. We show that a sample parameterization of OH generated from a CCM simulation is able to reproduce OH concentrations with a normalized root-mean-square error of approximately 5 % and capture the global mean methane lifetime within approximately 1 %. Our calculated accuracy of the parameterization assumes inputs being within the bounds of the training dataset. Large excursions from these bounds will likely decrease the overall accuracy. However, we show that the sample parameterization predicts large deviations in OH for an El Niño event that was not part of the training dataset and that the spatial distribution and strength of these deviations are consistent with the event. This result gives confidence in the fidelity of a parameterization developed with our methodology to simulate the spatial and temporal responses of OH to perturbations from large variations in the chemical, dynamical, and solar irradiance drivers of OH. In addition, we discuss how two machine learning metrics, Gain feature importance and Shapley additive explanations values, indicate that the behavior of a parameterization of OH generally accords with our understanding of OH chemistry, even though there are no physics- or chemistry-based constraints on the parameterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
qqqqq完成签到,获得积分10
1秒前
充电宝应助Passskd采纳,获得10
1秒前
2秒前
2秒前
4秒前
内向南风完成签到 ,获得积分10
6秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
Maestro_S应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得30
8秒前
8秒前
高高亿先应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
8秒前
ding应助科研通管家采纳,获得10
8秒前
1sunpf完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
spf完成签到,获得积分10
9秒前
荒野风发布了新的文献求助10
9秒前
luxkex完成签到,获得积分10
9秒前
9秒前
奶黄包发布了新的文献求助10
9秒前
有求必_应完成签到,获得积分10
10秒前
11秒前
ShuY完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029