A machine learning methodology for the generation of a parameterization of the hydroxyl radical

羟基自由基 甲烷 对流层 灵敏度(控制系统) 计算机科学 化学 气象学 算法 生物系统 激进的 有机化学 物理 电子工程 工程类 生物
作者
Daniel C. Anderson,Melanie B. Follette‐Cook,Sarah A. Strode,Julie M. Nicely,Junhua Liu,Peter D. Ivatt,B. N. Duncan
出处
期刊:Geoscientific Model Development 卷期号:15 (16): 6341-6358 被引量:12
标识
DOI:10.5194/gmd-15-6341-2022
摘要

Abstract. We present a methodology that uses gradient-boosted regression trees (a machine learning technique) and a full-chemistry simulation (i.e., training dataset) from a chemistry–climate model (CCM) to efficiently generate a parameterization of tropospheric hydroxyl radical (OH) that is a function of chemical, dynamical, and solar irradiance variables. This surrogate model of OH is designed to be integrated into a CCM and allow for computationally efficient simulation of nonlinear feedbacks between OH and tropospheric constituents that have loss by reaction with OH as their primary sinks (e.g., carbon monoxide (CO), methane (CH4), volatile organic compounds (VOCs)). Such a model framework is advantageous for studies that require multi-decadal simulations of CH4 or multi-year sensitivity simulations to understand the causes of trends and variations of CO and CH4. To allow the user to easily target the training dataset towards a desired application, we are outlining a methodology to generate a parameterization of OH and not presenting an “off-the-shelf” version of a parameterization to be incorporated into a CCM. This provides for the relatively easy creation of a new parameterization in response to, for example, changes in research goals or the underlying CCM chemistry and/or dynamics schemes. We show that a sample parameterization of OH generated from a CCM simulation is able to reproduce OH concentrations with a normalized root-mean-square error of approximately 5 % and capture the global mean methane lifetime within approximately 1 %. Our calculated accuracy of the parameterization assumes inputs being within the bounds of the training dataset. Large excursions from these bounds will likely decrease the overall accuracy. However, we show that the sample parameterization predicts large deviations in OH for an El Niño event that was not part of the training dataset and that the spatial distribution and strength of these deviations are consistent with the event. This result gives confidence in the fidelity of a parameterization developed with our methodology to simulate the spatial and temporal responses of OH to perturbations from large variations in the chemical, dynamical, and solar irradiance drivers of OH. In addition, we discuss how two machine learning metrics, Gain feature importance and Shapley additive explanations values, indicate that the behavior of a parameterization of OH generally accords with our understanding of OH chemistry, even though there are no physics- or chemistry-based constraints on the parameterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Donnie发布了新的文献求助10
刚刚
scc完成签到,获得积分10
刚刚
呼叫554发布了新的文献求助30
刚刚
Ava应助向北游采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
科研通AI5应助MRCHONG采纳,获得10
1秒前
Simon应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
wangg完成签到,获得积分20
1秒前
1秒前
Zn应助科研通管家采纳,获得20
1秒前
吹雪完成签到,获得积分0
1秒前
暴躁四叔应助科研通管家采纳,获得20
2秒前
2秒前
wanci应助科研通管家采纳,获得30
2秒前
2秒前
hhh发布了新的文献求助10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
Angelo完成签到 ,获得积分10
3秒前
xxxidgkris发布了新的文献求助30
3秒前
RC_Wang应助搬砖美少女采纳,获得10
3秒前
567完成签到,获得积分10
3秒前
3秒前
阳光人生完成签到,获得积分10
3秒前
4秒前
bkagyin应助一平采纳,获得10
4秒前
LLL完成签到,获得积分10
5秒前
liuliumei完成签到,获得积分10
5秒前
华仔应助呼啦呼啦咔采纳,获得10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672