已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing Protein Function Prediction Performance by Utilizing AlphaFold-Predicted Protein Structures

水准点(测量) 蛋白质结构预测 计算机科学 集合(抽象数据类型) 训练集 功能(生物学) 蛋白质功能预测 性能预测 数据挖掘 机器学习 人工智能 蛋白质结构 蛋白质功能 模拟 生物 基因 大地测量学 物理 进化生物学 生物化学 化学 程序设计语言 地理 核磁共振
作者
Wenjian Ma,Shugang Zhang,Zhen Li,Mingjian Jiang,Shuang Wang,Weigang Lu,Xiangpeng Bi,Huasen Jiang,Henggui Zhang,Zhiqiang Wei
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (17): 4008-4017 被引量:21
标识
DOI:10.1021/acs.jcim.2c00885
摘要

The structure of a protein is of great importance in determining its functionality, and this characteristic can be leveraged to train data-driven prediction models. However, the limited number of available protein structures severely limits the performance of these models. AlphaFold2 and its open-source data set of predicted protein structures have provided a promising solution to this problem, and these predicted structures are expected to benefit the model performance by increasing the number of training samples. In this work, we constructed a new data set that acted as a benchmark and implemented a state-of-the-art structure-based approach for determining whether the performance of the function prediction model can be improved by putting additional AlphaFold-predicted structures into the training set and further compared the performance differences between two models separately trained with real structures only and AlphaFold-predicted structures only. Experimental results indicated that structure-based protein function prediction models could benefit from virtual training data consisting of AlphaFold-predicted structures. First, model performances were improved in all three categories of Gene Ontology terms (GO terms) after adding predicted structures as training samples. Second, the model trained only on AlphaFold-predicted virtual samples achieved comparable performances to the model based on experimentally solved real structures, suggesting that predicted structures were almost equally effective in predicting protein functionality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
诚心爆米花完成签到,获得积分10
2秒前
3秒前
XZY完成签到 ,获得积分10
4秒前
9秒前
白玉元宵完成签到,获得积分10
11秒前
14秒前
LawShu完成签到 ,获得积分10
15秒前
16秒前
春夏爱科研完成签到,获得积分10
16秒前
uiuu发布了新的文献求助10
19秒前
Corey_huang发布了新的文献求助10
20秒前
雨肖完成签到,获得积分10
20秒前
炸鸡完成签到 ,获得积分10
20秒前
雾见春完成签到 ,获得积分10
22秒前
Corey_huang完成签到,获得积分20
26秒前
Aaernan完成签到 ,获得积分10
26秒前
29秒前
Endlessway应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
29秒前
科研通AI2S应助科研通管家采纳,获得30
29秒前
yy应助科研通管家采纳,获得10
29秒前
32秒前
32秒前
34秒前
一定能成功!完成签到,获得积分10
34秒前
35秒前
39秒前
wang完成签到 ,获得积分10
40秒前
44秒前
学不完了完成签到 ,获得积分10
46秒前
hello2001完成签到 ,获得积分10
46秒前
46秒前
47秒前
闪闪善若完成签到 ,获得积分10
50秒前
Nov完成签到 ,获得积分10
52秒前
白玉元宵发布了新的文献求助10
52秒前
ZERO完成签到,获得积分10
54秒前
56秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3223759
求助须知:如何正确求助?哪些是违规求助? 2872209
关于积分的说明 8179298
捐赠科研通 2539083
什么是DOI,文献DOI怎么找? 1371146
科研通“疑难数据库(出版商)”最低求助积分说明 646021
邀请新用户注册赠送积分活动 620010