Application of IoT-Based Drones in Precision Agriculture for Pest Control

无人机 人工智能 计算机科学 深度学习 机器学习 学习迁移 精准农业 人工神经网络 特征(语言学) 航程(航空) 特征提取 支持向量机 农业 工程类 生态学 生物 遗传学 语言学 哲学 航空航天工程
作者
Mohamad Reda A. Refaai,Vinjamuri S. N. C. H. Dattu,N. Gireesh,Ekta Dixit,C.H. Sandeep,David Christopher
出处
期刊:Advances in Materials Science and Engineering [Hindawi Limited]
卷期号:2022: 1-12 被引量:9
标识
DOI:10.1155/2022/1160258
摘要

Unmanned aerial vehicles (UAVs), commonly known as drones, have been progressively prevalent due to their capability to operate quickly and their vast range of applications in a variety of real-world circumstances. The utilization of UAVs in precision farming has lately gained a lot of attention from the scientific community. This study addresses with the assistance of drones in the precision agricultural area. This paper makes significant contributions by analyzing communication protocols and applying them to the challenge of commanding a fleet of drones to protect crops from parasite infestations. In this research, the effectiveness of nine powerful deep neural network models is measured for the detection of plant diseases using diverse methodologies. These deep neural networks are adapted to the immediate situation using transfer learning and deep extraction of features approaches. The presented study takes into account the used pretrained deep learning model for extracting features and fine-tuning. The deep feature extraction characteristics are subsequently categorized using support vector machines (SVMs) and extreme learning machines (ELMs). For measuring performance, the precision, sensitivities, specific, and F1-score are all evaluated. Deep feature extraction and SVM/ELM classification generated better outcomes than transfer learning, according to the analysis result. Furthermore, the analysis of the various methodologies tries to assess their effectiveness and costs. The different approaches, for example, confront difficulties such as investigating the region in the shortest possible time feasible, while eliminating the same region being searched by more drones, detecting parasites, and stopping their spread by applying the appropriate number of pesticides. Simulation models are a significant aid to researchers in conducting to evaluate these technologies and creating specific tactics and coordinating procedures capable of effectively supporting farms and achieving the aim. The main objective of this paper is to compare the search techniques of two distinct methods of parasitic to identify performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助mmyhn采纳,获得10
刚刚
李健的小迷弟应助Alex采纳,获得10
1秒前
LL发布了新的文献求助10
1秒前
甜美小蕾发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
慕青应助大明采纳,获得10
3秒前
Jerry完成签到,获得积分10
5秒前
6秒前
潘尼发布了新的文献求助10
7秒前
搞份炸鸡778完成签到,获得积分10
7秒前
惜风完成签到,获得积分20
8秒前
qin发布了新的文献求助10
9秒前
WXJ发布了新的文献求助10
9秒前
西西完成签到,获得积分20
9秒前
9秒前
Sun完成签到,获得积分10
10秒前
FashionBoy应助北木黎采纳,获得10
11秒前
传奇3应助小晓采纳,获得10
11秒前
zhang完成签到,获得积分10
11秒前
12秒前
13秒前
深情安青应助甜美小蕾采纳,获得10
13秒前
14秒前
15秒前
稳定上分发布了新的文献求助10
16秒前
Kyrie发布了新的文献求助10
17秒前
情怀应助陈补天采纳,获得10
17秒前
张小龙发布了新的文献求助10
17秒前
zhi完成签到,获得积分10
18秒前
Licyan完成签到,获得积分10
18秒前
Dagong-xz完成签到,获得积分10
19秒前
JamesPei应助假面绅士采纳,获得10
20秒前
bkagyin应助zhumengyu采纳,获得10
22秒前
22秒前
zigzag完成签到,获得积分10
22秒前
ty完成签到 ,获得积分10
24秒前
25秒前
陈补天发布了新的文献求助10
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141624
求助须知:如何正确求助?哪些是违规求助? 2792563
关于积分的说明 7803506
捐赠科研通 2448811
什么是DOI,文献DOI怎么找? 1302925
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601240