清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Clinical validation of deep learning algorithms for radiotherapy targeting of non-small-cell lung cancer: an observational study

医学 放射基因组学 人工智能 深度学习 机器学习 医学物理学 计算机科学 无线电技术
作者
Ahmed Hosny,Danielle S. Bitterman,Christian V. Guthier,Jack M. Qian,Hannah Roberts,Subha Perni,Anurag Saraf,Luke Peng,Itai Pashtan,Zezhong Ye,Benjamin H. Kann,David Kozono,David C. Christiani,Paul J. Catalano,Hugo J.W.L. Aerts,Raymond H. Mak
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:4 (9): e657-e666 被引量:37
标识
DOI:10.1016/s2589-7500(22)00129-7
摘要

Artificial intelligence (AI) and deep learning have shown great potential in streamlining clinical tasks. However, most studies remain confined to in silico validation in small internal cohorts, without external validation or data on real-world clinical utility. We developed a strategy for the clinical validation of deep learning models for segmenting primary non-small-cell lung cancer (NSCLC) tumours and involved lymph nodes in CT images, which is a time-intensive step in radiation treatment planning, with large variability among experts.In this observational study, CT images and segmentations were collected from eight internal and external sources from the USA, the Netherlands, Canada, and China, with patients from the Maastro and Harvard-RT1 datasets used for model discovery (segmented by a single expert). Validation consisted of interobserver and intraobserver benchmarking, primary validation, functional validation, and end-user testing on the following datasets: multi-delineation, Harvard-RT1, Harvard-RT2, RTOG-0617, NSCLC-radiogenomics, Lung-PET-CT-Dx, RIDER, and thorax phantom. Primary validation consisted of stepwise testing on increasingly external datasets using measures of overlap including volumetric dice (VD) and surface dice (SD). Functional validation explored dosimetric effect, model failure modes, test-retest stability, and accuracy. End-user testing with eight experts assessed automated segmentations in a simulated clinical setting.We included 2208 patients imaged between 2001 and 2015, with 787 patients used for model discovery and 1421 for model validation, including 28 patients for end-user testing. Models showed an improvement over the interobserver benchmark (multi-delineation dataset; VD 0·91 [IQR 0·83-0·92], p=0·0062; SD 0·86 [0·71-0·91], p=0·0005), and were within the intraobserver benchmark. For primary validation, AI performance on internal Harvard-RT1 data (segmented by the same expert who segmented the discovery data) was VD 0·83 (IQR 0·76-0·88) and SD 0·79 (0·68-0·88), within the interobserver benchmark. Performance on internal Harvard-RT2 data segmented by other experts was VD 0·70 (0·56-0·80) and SD 0·50 (0·34-0·71). Performance on RTOG-0617 clinical trial data was VD 0·71 (0·60-0·81) and SD 0·47 (0·35-0·59), with similar results on diagnostic radiology datasets NSCLC-radiogenomics and Lung-PET-CT-Dx. Despite these geometric overlap results, models yielded target volumes with equivalent radiation dose coverage to those of experts. We also found non-significant differences between de novo expert and AI-assisted segmentations. AI assistance led to a 65% reduction in segmentation time (5·4 min; p<0·0001) and a 32% reduction in interobserver variability (SD; p=0·013).We present a clinical validation strategy for AI models. We found that in silico geometric segmentation metrics might not correlate with clinical utility of the models. Experts' segmentation style and preference might affect model performance.US National Institutes of Health and EU European Research Council.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
燕山堂完成签到 ,获得积分10
12秒前
Frank发布了新的文献求助10
13秒前
wayne完成签到 ,获得积分10
22秒前
25秒前
djf点儿完成签到 ,获得积分10
39秒前
顾矜应助朴实的耳机采纳,获得10
44秒前
扬帆起航完成签到 ,获得积分10
46秒前
tmrrrrrr完成签到 ,获得积分10
48秒前
会扎针的小张完成签到,获得积分10
1分钟前
1分钟前
Sunny完成签到 ,获得积分10
1分钟前
虚幻的尔竹完成签到 ,获得积分10
1分钟前
1分钟前
背书强完成签到 ,获得积分10
1分钟前
火花完成签到 ,获得积分10
1分钟前
小西完成签到 ,获得积分10
1分钟前
2分钟前
zz完成签到 ,获得积分10
2分钟前
wefor完成签到 ,获得积分10
2分钟前
迷人的沛山完成签到 ,获得积分10
2分钟前
申木完成签到 ,获得积分10
2分钟前
段采萱完成签到 ,获得积分10
2分钟前
黄花菜完成签到 ,获得积分10
3分钟前
风不尽,树不静完成签到 ,获得积分10
3分钟前
3分钟前
fff发布了新的文献求助10
3分钟前
空曲完成签到 ,获得积分10
3分钟前
LELE完成签到 ,获得积分10
3分钟前
王磊完成签到 ,获得积分10
4分钟前
emxzemxz完成签到 ,获得积分10
4分钟前
xun完成签到,获得积分10
4分钟前
焚心结完成签到 ,获得积分10
4分钟前
AUGKING27完成签到 ,获得积分10
4分钟前
秋子骞完成签到 ,获得积分10
4分钟前
su完成签到 ,获得积分10
4分钟前
大大蕾完成签到 ,获得积分10
4分钟前
Sophie发布了新的文献求助10
4分钟前
badgerwithfisher完成签到,获得积分10
4分钟前
深情安青应助fff采纳,获得10
5分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068236
求助须知:如何正确求助?哪些是违规求助? 2722176
关于积分的说明 7476072
捐赠科研通 2369138
什么是DOI,文献DOI怎么找? 1256228
科研通“疑难数据库(出版商)”最低求助积分说明 609518
版权声明 596835