亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bayesian deep-learning for RUL prediction: An active learning perspective

人工智能 计算机科学 机器学习 灵活性(工程) 贝叶斯推理 辍学(神经网络) 推论 人工神经网络 深度学习 贝叶斯概率 数据挖掘 数学 统计
作者
Rong Zhu,Yuan Chen,Weiwen Peng,Zhi‐Sheng Ye
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:228: 108758-108758 被引量:90
标识
DOI:10.1016/j.ress.2022.108758
摘要

Deep learning (DL) has been intensively exploited for remaining useful life (RUL) prediction in the recent decade. Although with high precision and flexibility, DL methods need sufficient run-to-failure data to guarantee their performance. However, run-to-failure data is fairly expensive to obtain in many industrial applications. How to economically achieve high accuracy with few run-to-failure data becomes a critical and emergent issue. In this study, a Bayesian deep-active-learning framework is proposed for RUL prediction, which goes beyond traditional passive learning and introduces a novel active learning perspective. We use Bayesian neural networks with Monte Carlo dropout inference to predict RUL with uncertainty quantification for samples without run-to-failure labels. The prediction uncertainty is further used to develop an acquisition function for actively selecting target samples to obtain their run-to-failure labels. A recursive model training and active data selection mechanism are then developed to maintain accuracy while reducing the size of the training data. Two practical examples, one from a public bearing dataset and the other from our lab testing on battery degradation, are presented to demonstrate the proposed method. Experimental results demonstrate that 20 and 40% of run-to-failure data can be saved for the bearing and the battery RUL prediction, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助春和景明采纳,获得10
2秒前
Fletcherschwann完成签到,获得积分10
8秒前
9秒前
14秒前
15秒前
18秒前
20秒前
tan发布了新的文献求助10
20秒前
22秒前
清脆元冬发布了新的文献求助10
23秒前
FashionBoy应助闫恒采纳,获得10
23秒前
明理夏波完成签到,获得积分10
25秒前
30秒前
33秒前
明理夏波发布了新的文献求助10
35秒前
39秒前
风趣雅青发布了新的文献求助30
41秒前
酷波er应助科研通管家采纳,获得30
43秒前
Criminology34应助科研通管家采纳,获得10
43秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Jasper应助香菜芋头采纳,获得10
44秒前
LuoLuo完成签到,获得积分10
48秒前
张匀继完成签到,获得积分10
49秒前
56秒前
丘比特应助西内!卡Q因采纳,获得10
59秒前
1分钟前
1分钟前
清脆元冬完成签到,获得积分20
1分钟前
1分钟前
早睡早起完成签到 ,获得积分10
1分钟前
1分钟前
SciGPT应助Zola采纳,获得10
1分钟前
hankongli完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
伊萨卡发布了新的文献求助30
1分钟前
1分钟前
科研通AI6应助霜降采纳,获得10
1分钟前
chenchen完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432233
求助须知:如何正确求助?哪些是违规求助? 4544929
关于积分的说明 14194849
捐赠科研通 4464245
什么是DOI,文献DOI怎么找? 2447015
邀请新用户注册赠送积分活动 1438318
关于科研通互助平台的介绍 1415157