Bayesian deep-learning for RUL prediction: An active learning perspective

人工智能 计算机科学 机器学习 灵活性(工程) 贝叶斯推理 辍学(神经网络) 推论 人工神经网络 深度学习 贝叶斯概率 数据挖掘 数学 统计
作者
Rong Zhu,Yuan Chen,Weiwen Peng,Zhi‐Sheng Ye
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:228: 108758-108758 被引量:90
标识
DOI:10.1016/j.ress.2022.108758
摘要

Deep learning (DL) has been intensively exploited for remaining useful life (RUL) prediction in the recent decade. Although with high precision and flexibility, DL methods need sufficient run-to-failure data to guarantee their performance. However, run-to-failure data is fairly expensive to obtain in many industrial applications. How to economically achieve high accuracy with few run-to-failure data becomes a critical and emergent issue. In this study, a Bayesian deep-active-learning framework is proposed for RUL prediction, which goes beyond traditional passive learning and introduces a novel active learning perspective. We use Bayesian neural networks with Monte Carlo dropout inference to predict RUL with uncertainty quantification for samples without run-to-failure labels. The prediction uncertainty is further used to develop an acquisition function for actively selecting target samples to obtain their run-to-failure labels. A recursive model training and active data selection mechanism are then developed to maintain accuracy while reducing the size of the training data. Two practical examples, one from a public bearing dataset and the other from our lab testing on battery degradation, are presented to demonstrate the proposed method. Experimental results demonstrate that 20 and 40% of run-to-failure data can be saved for the bearing and the battery RUL prediction, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
等待凡灵发布了新的文献求助10
刚刚
山君发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
在水一方应助健忘的伟宸采纳,获得10
3秒前
3秒前
4秒前
笛九发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助150
4秒前
4秒前
4秒前
lisbattery完成签到 ,获得积分20
5秒前
shelley发布了新的文献求助10
5秒前
吟賞烟霞发布了新的文献求助10
5秒前
负责不愁发布了新的文献求助10
6秒前
6秒前
谷谷谷完成签到 ,获得积分10
6秒前
aaa发布了新的文献求助10
7秒前
7秒前
等待凡灵完成签到,获得积分10
7秒前
华仔应助yinying采纳,获得10
8秒前
凭亿近人发布了新的文献求助10
8秒前
Jade发布了新的文献求助200
8秒前
飞雪发布了新的文献求助10
9秒前
贾大大应助叮铃铛采纳,获得10
9秒前
11秒前
传奇3应助徐凤年采纳,获得10
11秒前
tyq完成签到,获得积分10
12秒前
ygp完成签到 ,获得积分10
12秒前
13秒前
香蕉觅云应助漫镜采纳,获得10
13秒前
hhhhwl完成签到,获得积分10
14秒前
北冥风完成签到,获得积分10
14秒前
球形齿轮完成签到,获得积分10
14秒前
细心青烟完成签到,获得积分20
14秒前
简单的银耳汤完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073256
求助须知:如何正确求助?哪些是违规求助? 4293380
关于积分的说明 13378282
捐赠科研通 4114827
什么是DOI,文献DOI怎么找? 2253172
邀请新用户注册赠送积分活动 1257983
关于科研通互助平台的介绍 1190836