Bayesian deep-learning for RUL prediction: An active learning perspective

人工智能 计算机科学 机器学习 灵活性(工程) 贝叶斯推理 辍学(神经网络) 推论 人工神经网络 深度学习 贝叶斯概率 数据挖掘 数学 统计
作者
Rong Zhu,Yuan Chen,Weiwen Peng,Zhi‐Sheng Ye
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:228: 108758-108758 被引量:90
标识
DOI:10.1016/j.ress.2022.108758
摘要

Deep learning (DL) has been intensively exploited for remaining useful life (RUL) prediction in the recent decade. Although with high precision and flexibility, DL methods need sufficient run-to-failure data to guarantee their performance. However, run-to-failure data is fairly expensive to obtain in many industrial applications. How to economically achieve high accuracy with few run-to-failure data becomes a critical and emergent issue. In this study, a Bayesian deep-active-learning framework is proposed for RUL prediction, which goes beyond traditional passive learning and introduces a novel active learning perspective. We use Bayesian neural networks with Monte Carlo dropout inference to predict RUL with uncertainty quantification for samples without run-to-failure labels. The prediction uncertainty is further used to develop an acquisition function for actively selecting target samples to obtain their run-to-failure labels. A recursive model training and active data selection mechanism are then developed to maintain accuracy while reducing the size of the training data. Two practical examples, one from a public bearing dataset and the other from our lab testing on battery degradation, are presented to demonstrate the proposed method. Experimental results demonstrate that 20 and 40% of run-to-failure data can be saved for the bearing and the battery RUL prediction, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性的咖啡完成签到,获得积分20
刚刚
Kevin完成签到,获得积分10
1秒前
李宏梅完成签到,获得积分10
2秒前
暮沐晓光完成签到,获得积分10
2秒前
闪闪的夜阑完成签到 ,获得积分10
2秒前
yyy发布了新的文献求助10
3秒前
scot发布了新的文献求助10
4秒前
4秒前
啦啦啦啦完成签到,获得积分10
6秒前
7秒前
8秒前
汉堡包应助感动水杯采纳,获得10
9秒前
李fr发布了新的文献求助10
9秒前
yyy完成签到,获得积分20
9秒前
10秒前
wu发布了新的文献求助10
10秒前
10秒前
shipengfei应助Fanflyer采纳,获得20
10秒前
英勇真发布了新的文献求助10
11秒前
wanci应助禹映安采纳,获得10
11秒前
zoe发布了新的文献求助10
12秒前
毅可爱完成签到,获得积分10
12秒前
nfei完成签到 ,获得积分10
13秒前
倔驴发布了新的文献求助10
14秒前
dahafei完成签到,获得积分10
14秒前
华仔应助林夕采纳,获得10
15秒前
NexusExplorer应助小甜饼采纳,获得10
16秒前
16秒前
16秒前
25486发布了新的文献求助10
16秒前
希望天下0贩的0应助木木采纳,获得10
17秒前
毅可爱发布了新的文献求助10
18秒前
18秒前
19秒前
腼腆的恶天完成签到,获得积分10
19秒前
磊少完成签到,获得积分10
19秒前
CiCi发布了新的文献求助10
20秒前
胡佳悦发布了新的文献求助10
21秒前
感动水杯发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4545926
求助须知:如何正确求助?哪些是违规求助? 3977396
关于积分的说明 12316211
捐赠科研通 3645739
什么是DOI,文献DOI怎么找? 2007732
邀请新用户注册赠送积分活动 1043308
科研通“疑难数据库(出版商)”最低求助积分说明 932103