Bayesian deep-learning for RUL prediction: An active learning perspective

人工智能 计算机科学 机器学习 灵活性(工程) 贝叶斯推理 辍学(神经网络) 推论 人工神经网络 深度学习 贝叶斯概率 数据挖掘 数学 统计
作者
Rong Zhu,Yuan Chen,Weiwen Peng,Zhi‐Sheng Ye
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:228: 108758-108758 被引量:90
标识
DOI:10.1016/j.ress.2022.108758
摘要

Deep learning (DL) has been intensively exploited for remaining useful life (RUL) prediction in the recent decade. Although with high precision and flexibility, DL methods need sufficient run-to-failure data to guarantee their performance. However, run-to-failure data is fairly expensive to obtain in many industrial applications. How to economically achieve high accuracy with few run-to-failure data becomes a critical and emergent issue. In this study, a Bayesian deep-active-learning framework is proposed for RUL prediction, which goes beyond traditional passive learning and introduces a novel active learning perspective. We use Bayesian neural networks with Monte Carlo dropout inference to predict RUL with uncertainty quantification for samples without run-to-failure labels. The prediction uncertainty is further used to develop an acquisition function for actively selecting target samples to obtain their run-to-failure labels. A recursive model training and active data selection mechanism are then developed to maintain accuracy while reducing the size of the training data. Two practical examples, one from a public bearing dataset and the other from our lab testing on battery degradation, are presented to demonstrate the proposed method. Experimental results demonstrate that 20 and 40% of run-to-failure data can be saved for the bearing and the battery RUL prediction, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
fabea完成签到,获得积分10
5秒前
7秒前
11mao11完成签到 ,获得积分10
8秒前
Yumiko完成签到 ,获得积分10
10秒前
12秒前
15秒前
无情飞薇完成签到 ,获得积分10
17秒前
doclarrin完成签到 ,获得积分10
22秒前
23秒前
俊逸吐司完成签到 ,获得积分10
29秒前
直率新柔完成签到 ,获得积分10
29秒前
01259完成签到 ,获得积分10
31秒前
蔡晓华完成签到,获得积分10
33秒前
美好灵寒完成签到 ,获得积分10
34秒前
37秒前
40秒前
tiany完成签到,获得积分10
53秒前
53秒前
青柠完成签到 ,获得积分10
59秒前
看文献完成签到,获得积分10
59秒前
1分钟前
震动的鹏飞完成签到 ,获得积分10
1分钟前
1分钟前
洁净的幼珊完成签到,获得积分10
1分钟前
简单应助科研通管家采纳,获得10
1分钟前
萧萧应助科研通管家采纳,获得10
1分钟前
shouz应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
简单应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
zhixue2025完成签到 ,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
简单应助科研通管家采纳,获得10
1分钟前
ycd完成签到,获得积分10
1分钟前
1分钟前
YufeiLiu发布了新的文献求助10
1分钟前
Damon完成签到 ,获得积分10
1分钟前
缺口口完成签到 ,获得积分10
1分钟前
dddd完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449763
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481712
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438559