Analytical and numerical simulations of depolymerization based on discrete model: A chain‐end scission scenario

解聚 断链 聚合物 分散性 单体 聚合 动力学 材料科学 热力学 化学 高分子化学 物理 复合材料 经典力学
作者
Jiang Wang,Tao Wang,Zhiping Luo,Y. Zhou
出处
期刊:Aiche Journal [Wiley]
卷期号:69 (2) 被引量:1
标识
DOI:10.1002/aic.17854
摘要

Depolymerization by chain-end scission enables ideally full recovery of monomers, which is considered as a promising route for polymer recycling. Despite attractive experimental achievements, insightful depolymerization kinetic modeling study is capable of providing information for better understanding polymer degradation process and reactor design in polymer industry. Herein, an improved analytical solution for depolymerization by chain-end scission is derived and validated by numerical exact solution. The strength of the as-derived analytical solution lies on its capability of capturing depolymerization kinetics of polymers with large degrees of polymerization and different initial distributions (e.g., Gamma, monodisperse, Poisson, Flory-Schulz, exponential, and log-normal distributions). Additionally, the changes in average properties of polymer are accessed by using a hybrid method based on the method of moment (MoM) and the improved analytical solution considering dimers in chain-end scission process for the first time. Finally, kinetic insights into depolymerization of self-immolative polymers are also gained by the MoM-based model in parallel with two sets of experimental data. This work offers simulation protocols for a profound understanding of depolymerization kinetics and inspecting molecular properties during depolymerization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_89eBO8完成签到 ,获得积分10
刚刚
隐形曼青应助ZeJ采纳,获得10
刚刚
刚刚
隐形曼青应助温暖的钻石采纳,获得10
1秒前
Khr1stINK发布了新的文献求助10
2秒前
123cxj发布了新的文献求助10
3秒前
星辰大海应助红红采纳,获得10
3秒前
sweetbearm应助小周采纳,获得10
4秒前
科研通AI5应助赖道之采纳,获得10
4秒前
5秒前
HonamC完成签到,获得积分10
6秒前
十三十四十五完成签到,获得积分10
7秒前
潇洒的问夏完成签到 ,获得积分10
9秒前
无声瀑布完成签到,获得积分10
9秒前
Bingtao_Lian完成签到 ,获得积分10
10秒前
小布丁完成签到 ,获得积分10
10秒前
竹筏过海应助季生采纳,获得30
11秒前
12秒前
buno应助22采纳,获得10
13秒前
赘婿应助TT采纳,获得10
14秒前
14秒前
14秒前
15秒前
Jenny应助赖道之采纳,获得10
17秒前
依古比古完成签到 ,获得积分10
19秒前
汎影发布了新的文献求助10
19秒前
小二完成签到,获得积分10
19秒前
20秒前
22秒前
顾矜应助长情洙采纳,获得10
22秒前
monere发布了新的文献求助30
22秒前
Xiaoxiao应助汉关采纳,获得10
24秒前
24秒前
汎影完成签到,获得积分10
25秒前
26秒前
Chen发布了新的文献求助10
28秒前
WW完成签到,获得积分10
28秒前
30秒前
hyjcnhyj完成签到,获得积分10
31秒前
英姑应助赖道之采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808