New machine learning application platform for spatial–temporal thermal error prediction and control with STFGCN for ball screw system

计算机科学 卷积神经网络 深度学习 人工智能 云计算 大数据 人工神经网络 实时计算 机器学习 数据挖掘 操作系统
作者
Hongquan Gui,Jialan Liu,Chi Ma,Mengyuan Li,Shilong Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:192: 110240-110240 被引量:8
标识
DOI:10.1016/j.ymssp.2023.110240
摘要

The big data platform, which has a high control accuracy and efficiency, is expected to realize the high-accuracy prediction and real-time control of the thermal error (TE) for the ball screw system. But the TE of a ball screw system has significant dynamic spatial–temporal behaviors. The TE model, which fully captures its dynamic spatial–temporal behaviors, has not been reported so far. Moreover, the embedding of the TE model into the big data platform is extremely difficult, and the deployment of the big data platform is time-consuming and relies on the expert knowledge, and the cloud computing used in the big data platform also faces a limited bandwidth pressure of the industrial Internet, leading to the failure of the real-time control. To overcome the above limitations, a novel machine learning application platform (MLAP) is designed based on the cloud-terminal architecture. Moreover, the spatial–temporal fusion graph convolutional network (STFGCN) is proposed for the first time to fully capture of the dynamic spatial–temporal behaviors, and the proposed STFGCN is embedded into the designed MLAP to expedite the training process of the STFGCN model and reduce the bandwidth pressure on the industrial Internet. The prediction performance and robustness of the proposed STFGCN model are compared with that of the traditional multiple linear regression (MLR), long short-term memory (LSTM), gated recurrent unit (GRU), convolutional neural network-long short-term memory (CNN-LSTM), temporal-graph convolutional network (T-GCN), hypergraph neural network (HGNN), spatial–temporal graph convolutional network (STGCN), and attention-based spatial–temporal graph convolutional network (ASTGCN). The results suggest that the evaluation metrics R2 of the MLR, LSTM, GRU, CNN-LSTM, T-GCN, HGNN, STGCN, ASTGCN, and STFGCN are 0.8039, 0.9500, 0.9441, 0.9414, 0.9571, 0.9512, 0.9689, 0.9712, and 0.9812 to show the prediction performance, respectively. Moreover, the training rate is improved by adding the number of the virtual machine nodes on the MLAP. The reduction rate of the machining error is the ratio of the machining error reduction to the original machining error. The positioning error and its fluctuation range of the ball screw system are reduced effectively, and the machining errors with the implementation of the MLAP are decreased by more than 33% and 72% compared with that with the pitch error control and without the TE control, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YZ完成签到,获得积分10
1秒前
彭于晏应助酒九采纳,获得10
1秒前
AAA论文求过完成签到 ,获得积分10
3秒前
NagatoYuki完成签到,获得积分10
4秒前
中科院饲养员完成签到,获得积分10
6秒前
狂野飞柏完成签到 ,获得积分10
7秒前
7秒前
廖骏完成签到,获得积分10
8秒前
老鼠耗子完成签到,获得积分10
8秒前
liangyu完成签到,获得积分10
9秒前
vickyyao发布了新的文献求助10
10秒前
10秒前
11秒前
斯文的慕儿完成签到,获得积分10
14秒前
萨格完成签到 ,获得积分10
14秒前
爆米花应助xhs12138采纳,获得10
15秒前
16秒前
吉吉国王完成签到 ,获得积分10
19秒前
乐于助人大好人完成签到 ,获得积分10
20秒前
戈屿完成签到 ,获得积分10
20秒前
柔弱静柏完成签到,获得积分10
21秒前
汉堡包应助酷酷的涵蕾采纳,获得30
22秒前
23秒前
撒个人完成签到 ,获得积分10
23秒前
杨自强完成签到,获得积分10
25秒前
科研通AI2S应助任梓宁采纳,获得10
26秒前
daixan89完成签到,获得积分10
26秒前
繁荣的映雁完成签到,获得积分10
26秒前
小k发布了新的文献求助10
28秒前
29秒前
疑问师完成签到,获得积分10
29秒前
29秒前
replay发布了新的文献求助10
30秒前
LYHHHH涵完成签到 ,获得积分10
30秒前
30秒前
31秒前
31秒前
vickyyao完成签到,获得积分10
31秒前
隐形曼青应助wang5945采纳,获得10
32秒前
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162682
求助须知:如何正确求助?哪些是违规求助? 2813576
关于积分的说明 7901041
捐赠科研通 2473140
什么是DOI,文献DOI怎么找? 1316672
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175