New machine learning application platform for spatial–temporal thermal error prediction and control with STFGCN for ball screw system

计算机科学 卷积神经网络 深度学习 人工智能 云计算 大数据 人工神经网络 实时计算 机器学习 数据挖掘 操作系统
作者
Hongquan Gui,Jialan Liu,Chi Ma,Mengyuan Li,Shilong Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:192: 110240-110240 被引量:12
标识
DOI:10.1016/j.ymssp.2023.110240
摘要

The big data platform, which has a high control accuracy and efficiency, is expected to realize the high-accuracy prediction and real-time control of the thermal error (TE) for the ball screw system. But the TE of a ball screw system has significant dynamic spatial–temporal behaviors. The TE model, which fully captures its dynamic spatial–temporal behaviors, has not been reported so far. Moreover, the embedding of the TE model into the big data platform is extremely difficult, and the deployment of the big data platform is time-consuming and relies on the expert knowledge, and the cloud computing used in the big data platform also faces a limited bandwidth pressure of the industrial Internet, leading to the failure of the real-time control. To overcome the above limitations, a novel machine learning application platform (MLAP) is designed based on the cloud-terminal architecture. Moreover, the spatial–temporal fusion graph convolutional network (STFGCN) is proposed for the first time to fully capture of the dynamic spatial–temporal behaviors, and the proposed STFGCN is embedded into the designed MLAP to expedite the training process of the STFGCN model and reduce the bandwidth pressure on the industrial Internet. The prediction performance and robustness of the proposed STFGCN model are compared with that of the traditional multiple linear regression (MLR), long short-term memory (LSTM), gated recurrent unit (GRU), convolutional neural network-long short-term memory (CNN-LSTM), temporal-graph convolutional network (T-GCN), hypergraph neural network (HGNN), spatial–temporal graph convolutional network (STGCN), and attention-based spatial–temporal graph convolutional network (ASTGCN). The results suggest that the evaluation metrics R2 of the MLR, LSTM, GRU, CNN-LSTM, T-GCN, HGNN, STGCN, ASTGCN, and STFGCN are 0.8039, 0.9500, 0.9441, 0.9414, 0.9571, 0.9512, 0.9689, 0.9712, and 0.9812 to show the prediction performance, respectively. Moreover, the training rate is improved by adding the number of the virtual machine nodes on the MLAP. The reduction rate of the machining error is the ratio of the machining error reduction to the original machining error. The positioning error and its fluctuation range of the ball screw system are reduced effectively, and the machining errors with the implementation of the MLAP are decreased by more than 33% and 72% compared with that with the pitch error control and without the TE control, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助nnyyaaa采纳,获得20
1秒前
量子星尘发布了新的文献求助10
3秒前
专注乐巧发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
Verritis发布了新的文献求助10
6秒前
秋风烈马完成签到,获得积分20
7秒前
7秒前
一叶扁舟0147完成签到,获得积分10
7秒前
年轻晟睿发布了新的文献求助10
8秒前
8秒前
莫言发布了新的文献求助10
8秒前
认真的柏柳完成签到 ,获得积分10
8秒前
9秒前
xieyan发布了新的文献求助10
10秒前
11秒前
AN发布了新的文献求助10
11秒前
酷炫灵安发布了新的文献求助10
11秒前
专注乐巧完成签到,获得积分20
11秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
sss完成签到,获得积分10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
Ian_Zhang应助科研通管家采纳,获得30
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
Ian_Zhang应助科研通管家采纳,获得30
12秒前
12秒前
13秒前
一颗苹果完成签到 ,获得积分10
13秒前
13秒前
慈祥的博发布了新的文献求助10
14秒前
雨天完成签到,获得积分10
14秒前
莫言完成签到,获得积分10
16秒前
大个应助张晓采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431074
求助须知:如何正确求助?哪些是违规求助? 4544193
关于积分的说明 14191176
捐赠科研通 4462733
什么是DOI,文献DOI怎么找? 2446624
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414596