New machine learning application platform for spatial–temporal thermal error prediction and control with STFGCN for ball screw system

计算机科学 卷积神经网络 深度学习 人工智能 云计算 大数据 人工神经网络 实时计算 机器学习 数据挖掘 操作系统
作者
Hongquan Gui,Jialan Liu,Chi Ma,Mengyuan Li,Shilong Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:192: 110240-110240 被引量:12
标识
DOI:10.1016/j.ymssp.2023.110240
摘要

The big data platform, which has a high control accuracy and efficiency, is expected to realize the high-accuracy prediction and real-time control of the thermal error (TE) for the ball screw system. But the TE of a ball screw system has significant dynamic spatial–temporal behaviors. The TE model, which fully captures its dynamic spatial–temporal behaviors, has not been reported so far. Moreover, the embedding of the TE model into the big data platform is extremely difficult, and the deployment of the big data platform is time-consuming and relies on the expert knowledge, and the cloud computing used in the big data platform also faces a limited bandwidth pressure of the industrial Internet, leading to the failure of the real-time control. To overcome the above limitations, a novel machine learning application platform (MLAP) is designed based on the cloud-terminal architecture. Moreover, the spatial–temporal fusion graph convolutional network (STFGCN) is proposed for the first time to fully capture of the dynamic spatial–temporal behaviors, and the proposed STFGCN is embedded into the designed MLAP to expedite the training process of the STFGCN model and reduce the bandwidth pressure on the industrial Internet. The prediction performance and robustness of the proposed STFGCN model are compared with that of the traditional multiple linear regression (MLR), long short-term memory (LSTM), gated recurrent unit (GRU), convolutional neural network-long short-term memory (CNN-LSTM), temporal-graph convolutional network (T-GCN), hypergraph neural network (HGNN), spatial–temporal graph convolutional network (STGCN), and attention-based spatial–temporal graph convolutional network (ASTGCN). The results suggest that the evaluation metrics R2 of the MLR, LSTM, GRU, CNN-LSTM, T-GCN, HGNN, STGCN, ASTGCN, and STFGCN are 0.8039, 0.9500, 0.9441, 0.9414, 0.9571, 0.9512, 0.9689, 0.9712, and 0.9812 to show the prediction performance, respectively. Moreover, the training rate is improved by adding the number of the virtual machine nodes on the MLAP. The reduction rate of the machining error is the ratio of the machining error reduction to the original machining error. The positioning error and its fluctuation range of the ball screw system are reduced effectively, and the machining errors with the implementation of the MLAP are decreased by more than 33% and 72% compared with that with the pitch error control and without the TE control, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的中蓝完成签到 ,获得积分10
刚刚
希望天下0贩的0应助郭翔采纳,获得10
刚刚
认真汲完成签到,获得积分10
1秒前
2秒前
shs发布了新的文献求助10
2秒前
fdpb完成签到,获得积分10
3秒前
啰友痕武次子完成签到,获得积分10
3秒前
汉堡包应助魔幻幻桃采纳,获得10
3秒前
3秒前
yisa完成签到,获得积分10
3秒前
NexusExplorer应助哈哈哈采纳,获得10
3秒前
3秒前
完美世界应助在下小绿采纳,获得10
4秒前
二倍速完成签到,获得积分20
4秒前
4秒前
白潇潇完成签到 ,获得积分10
4秒前
4秒前
4秒前
polly发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
caixiayin发布了新的文献求助10
7秒前
玉洁完成签到,获得积分10
7秒前
7秒前
JamesPei应助赵宝正采纳,获得10
7秒前
小伙伴发布了新的文献求助10
7秒前
整齐尔白发布了新的文献求助10
8秒前
LX发布了新的文献求助20
8秒前
小大夫完成签到 ,获得积分10
9秒前
9秒前
讨厌水煮蛋完成签到,获得积分10
9秒前
狗蛋发布了新的文献求助150
9秒前
ZY发布了新的文献求助30
9秒前
9秒前
grandtough发布了新的文献求助10
9秒前
程爽完成签到,获得积分20
9秒前
斯文的傲珊完成签到,获得积分10
10秒前
斜玉发布了新的文献求助10
10秒前
nininini发布了新的文献求助10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406