Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing

断层(地质) 计算机科学 方位(导航) 可靠性(半导体) 数据挖掘 领域知识 可靠性工程 工程类 控制工程 人工智能 机器学习 量子力学 物理 地质学 功率(物理) 地震学
作者
Yongchao Zhang,Jinchen Ji,Zhaohui Ren,Qing Ni,Fengshou Gu,Ke Feng,Kun Yu,Jian Ge,Zihao Lei,Zheng Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:234: 109186-109186 被引量:177
标识
DOI:10.1016/j.ress.2023.109186
摘要

Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which plays a vital role in guaranteeing the reliability, safety, and economical efficiency of mechanical systems. Traditional data-driven fault diagnosis methods require obtaining a dataset of full failure modes in advance as the training data. However, this kind of dataset is not always available in some critical industrial scenarios, which impairs the practicability of the data-driven fault diagnosis methods for various applications. A digital twin, which establishes a virtual representation of a physical entity to mirror its operating conditions, would make fault diagnosis of rolling bearings feasible when the fault data are insufficient. In this paper, we propose a novel digital twin-driven approach for implementing fault diagnosis of rolling bearings with insufficient training data. First, a dynamics-based virtual representation of rolling bearings is built to generate simulated data. Then, a Transformer-based network is developed to learn the knowledge of the simulated data for diagnostics. Meanwhile, a selective adversarial strategy is introduced to achieve cross-domain feature alignments in scenarios where the health conditions of the measured data are unknown. To this end, this study proposes a digital twin-driven fault diagnosis framework by using labeled simulated data and unlabeled measured data. The experimental results show that the proposed method can obtain high diagnostic performance when the real-world data is unlabeled and has unknown health conditions, proving that the proposed method has significant benefits for the health management of critical rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助wanwan采纳,获得10
刚刚
2秒前
4秒前
Liii完成签到,获得积分10
6秒前
酷炫的红牛完成签到,获得积分10
7秒前
粥游天下完成签到,获得积分10
7秒前
8秒前
8秒前
Rondab应助Crisp采纳,获得10
10秒前
岳凯发布了新的文献求助10
10秒前
奋斗静蕾发布了新的文献求助10
11秒前
调皮的安阳完成签到,获得积分10
11秒前
schuang完成签到,获得积分10
12秒前
薛定谔的猫完成签到 ,获得积分10
13秒前
13秒前
大模型应助naturehome采纳,获得10
15秒前
酒酿是也完成签到 ,获得积分10
15秒前
16秒前
SciGPT应助美好斓采纳,获得20
16秒前
LBJ关闭了LBJ文献求助
17秒前
吉格斯发布了新的文献求助10
17秒前
zk完成签到,获得积分10
18秒前
完美世界应助奋斗静蕾采纳,获得10
20秒前
无为完成签到,获得积分10
20秒前
21秒前
ppy发布了新的文献求助30
26秒前
27秒前
酷波er应助linkman采纳,获得10
31秒前
研友_8KX15L完成签到 ,获得积分10
32秒前
PhDshi留下了新的社区评论
33秒前
Li发布了新的文献求助10
33秒前
35秒前
一坨发布了新的文献求助30
36秒前
ATOM完成签到,获得积分20
36秒前
Crisp完成签到,获得积分10
36秒前
可爱的函函应助linkman采纳,获得10
38秒前
凡迪亚比完成签到,获得积分10
39秒前
hg08发布了新的文献求助10
42秒前
自然语薇完成签到,获得积分10
42秒前
LBJ完成签到,获得积分10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991794
求助须知:如何正确求助?哪些是违规求助? 3532981
关于积分的说明 11260197
捐赠科研通 3272241
什么是DOI,文献DOI怎么找? 1805664
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809405