亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing

断层(地质) 计算机科学 方位(导航) 可靠性(半导体) 数据挖掘 领域知识 可靠性工程 工程类 控制工程 人工智能 机器学习 量子力学 物理 地质学 功率(物理) 地震学
作者
Yongchao Zhang,Jinchen Ji,Zhaohui Ren,Qing Ni,Fengshou Gu,Ke Feng,Kun Yu,Jian Ge,Zihao Lei,Zheng Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:234: 109186-109186 被引量:275
标识
DOI:10.1016/j.ress.2023.109186
摘要

Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which plays a vital role in guaranteeing the reliability, safety, and economical efficiency of mechanical systems. Traditional data-driven fault diagnosis methods require obtaining a dataset of full failure modes in advance as the training data. However, this kind of dataset is not always available in some critical industrial scenarios, which impairs the practicability of the data-driven fault diagnosis methods for various applications. A digital twin, which establishes a virtual representation of a physical entity to mirror its operating conditions, would make fault diagnosis of rolling bearings feasible when the fault data are insufficient. In this paper, we propose a novel digital twin-driven approach for implementing fault diagnosis of rolling bearings with insufficient training data. First, a dynamics-based virtual representation of rolling bearings is built to generate simulated data. Then, a Transformer-based network is developed to learn the knowledge of the simulated data for diagnostics. Meanwhile, a selective adversarial strategy is introduced to achieve cross-domain feature alignments in scenarios where the health conditions of the measured data are unknown. To this end, this study proposes a digital twin-driven fault diagnosis framework by using labeled simulated data and unlabeled measured data. The experimental results show that the proposed method can obtain high diagnostic performance when the real-world data is unlabeled and has unknown health conditions, proving that the proposed method has significant benefits for the health management of critical rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
Cmqq发布了新的文献求助10
6秒前
科研通AI6应助满意的世界采纳,获得20
8秒前
20秒前
ding应助Cmqq采纳,获得10
20秒前
24秒前
26秒前
Krim完成签到 ,获得积分0
27秒前
Orange应助科研通管家采纳,获得10
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
BowieHuang应助科研通管家采纳,获得10
27秒前
33秒前
patrickli发布了新的文献求助10
39秒前
patrickli完成签到,获得积分10
43秒前
44秒前
Swear完成签到 ,获得积分10
45秒前
49秒前
tianle完成签到,获得积分10
50秒前
51秒前
52秒前
tianle发布了新的文献求助10
55秒前
Cherish发布了新的文献求助10
56秒前
57秒前
白磊松完成签到 ,获得积分10
1分钟前
KYT完成签到 ,获得积分10
1分钟前
Cmqq发布了新的文献求助10
1分钟前
Cherish完成签到,获得积分10
1分钟前
丘比特应助小江采纳,获得10
1分钟前
1分钟前
1分钟前
西安浴日光能赵炜完成签到,获得积分10
1分钟前
人工智能小配方完成签到,获得积分10
1分钟前
1分钟前
喜宝发布了新的文献求助10
1分钟前
林迁完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599747
求助须知:如何正确求助?哪些是违规求助? 4685478
关于积分的说明 14838528
捐赠科研通 4670257
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898