已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing

断层(地质) 计算机科学 方位(导航) 可靠性(半导体) 数据挖掘 领域知识 可靠性工程 工程类 控制工程 人工智能 机器学习 量子力学 物理 地质学 功率(物理) 地震学
作者
Yongchao Zhang,Jinchen Ji,Zhaohui Ren,Qing Ni,Fengshou Gu,Ke Feng,Kun Yu,Jian Ge,Zihao Lei,Zheng Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:234: 109186-109186 被引量:275
标识
DOI:10.1016/j.ress.2023.109186
摘要

Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which plays a vital role in guaranteeing the reliability, safety, and economical efficiency of mechanical systems. Traditional data-driven fault diagnosis methods require obtaining a dataset of full failure modes in advance as the training data. However, this kind of dataset is not always available in some critical industrial scenarios, which impairs the practicability of the data-driven fault diagnosis methods for various applications. A digital twin, which establishes a virtual representation of a physical entity to mirror its operating conditions, would make fault diagnosis of rolling bearings feasible when the fault data are insufficient. In this paper, we propose a novel digital twin-driven approach for implementing fault diagnosis of rolling bearings with insufficient training data. First, a dynamics-based virtual representation of rolling bearings is built to generate simulated data. Then, a Transformer-based network is developed to learn the knowledge of the simulated data for diagnostics. Meanwhile, a selective adversarial strategy is introduced to achieve cross-domain feature alignments in scenarios where the health conditions of the measured data are unknown. To this end, this study proposes a digital twin-driven fault diagnosis framework by using labeled simulated data and unlabeled measured data. The experimental results show that the proposed method can obtain high diagnostic performance when the real-world data is unlabeled and has unknown health conditions, proving that the proposed method has significant benefits for the health management of critical rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张泽林完成签到,获得积分10
5秒前
Ivy关闭了Ivy文献求助
10秒前
11秒前
落寞的寒云完成签到 ,获得积分10
12秒前
杨武天一发布了新的文献求助10
14秒前
hb完成签到,获得积分10
17秒前
矜天完成签到 ,获得积分10
18秒前
慕青应助xmut采纳,获得10
19秒前
19秒前
20秒前
slby完成签到 ,获得积分10
21秒前
21秒前
26秒前
David完成签到,获得积分10
27秒前
xmut完成签到,获得积分10
27秒前
lizhoukan1完成签到,获得积分10
27秒前
27秒前
xmut发布了新的文献求助10
32秒前
呆呆完成签到 ,获得积分10
32秒前
酷波er应助David采纳,获得10
33秒前
天霸完成签到,获得积分10
35秒前
火星仙人掌完成签到 ,获得积分10
37秒前
挽忆逍遥完成签到 ,获得积分10
37秒前
科目三应助鸡狗不如采纳,获得10
37秒前
38秒前
33333完成签到 ,获得积分10
38秒前
39秒前
40秒前
43秒前
善学以致用应助Yesir采纳,获得10
44秒前
鸡狗不如完成签到,获得积分10
44秒前
Eatanicecube完成签到,获得积分10
45秒前
天霸发布了新的文献求助10
47秒前
鸡狗不如发布了新的文献求助10
48秒前
GingerF应助zyz采纳,获得100
48秒前
倩倩完成签到 ,获得积分10
50秒前
独特鸽子完成签到 ,获得积分20
51秒前
情怀应助科研通管家采纳,获得10
53秒前
浮游应助科研通管家采纳,获得10
53秒前
CodeCraft应助科研通管家采纳,获得30
53秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443691
求助须知:如何正确求助?哪些是违规求助? 4553531
关于积分的说明 14242226
捐赠科研通 4475181
什么是DOI,文献DOI怎么找? 2452302
邀请新用户注册赠送积分活动 1443219
关于科研通互助平台的介绍 1418888