Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing

断层(地质) 计算机科学 方位(导航) 可靠性(半导体) 数据挖掘 领域知识 可靠性工程 工程类 控制工程 人工智能 机器学习 量子力学 物理 地质学 功率(物理) 地震学
作者
Yongchao Zhang,Jinchen Ji,Zhaohui Ren,Qing Ni,Fengshou Gu,Ke Feng,Kun Yu,Jian Ge,Zihao Lei,Zheng Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:234: 109186-109186 被引量:124
标识
DOI:10.1016/j.ress.2023.109186
摘要

Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which plays a vital role in guaranteeing the reliability, safety, and economical efficiency of mechanical systems. Traditional data-driven fault diagnosis methods require obtaining a dataset of full failure modes in advance as the training data. However, this kind of dataset is not always available in some critical industrial scenarios, which impairs the practicability of the data-driven fault diagnosis methods for various applications. A digital twin, which establishes a virtual representation of a physical entity to mirror its operating conditions, would make fault diagnosis of rolling bearings feasible when the fault data are insufficient. In this paper, we propose a novel digital twin-driven approach for implementing fault diagnosis of rolling bearings with insufficient training data. First, a dynamics-based virtual representation of rolling bearings is built to generate simulated data. Then, a Transformer-based network is developed to learn the knowledge of the simulated data for diagnostics. Meanwhile, a selective adversarial strategy is introduced to achieve cross-domain feature alignments in scenarios where the health conditions of the measured data are unknown. To this end, this study proposes a digital twin-driven fault diagnosis framework by using labeled simulated data and unlabeled measured data. The experimental results show that the proposed method can obtain high diagnostic performance when the real-world data is unlabeled and has unknown health conditions, proving that the proposed method has significant benefits for the health management of critical rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sue完成签到,获得积分10
2秒前
八十八完成签到 ,获得积分10
3秒前
小蘑菇应助mmol采纳,获得10
3秒前
PANYIAO发布了新的文献求助10
3秒前
5秒前
王淳发布了新的文献求助10
6秒前
现代安筠发布了新的文献求助10
6秒前
别太可爱完成签到,获得积分10
7秒前
在水一方应助且听风吟采纳,获得10
7秒前
LHZ完成签到,获得积分10
7秒前
9秒前
老肥彭发布了新的文献求助10
9秒前
9秒前
可乐发布了新的文献求助10
9秒前
菜鸡完成签到,获得积分10
10秒前
11秒前
共享精神应助玖梦采纳,获得10
12秒前
12秒前
肥四发布了新的文献求助10
13秒前
在水一方应助恍恍惚惚采纳,获得10
14秒前
今后应助PANYIAO采纳,获得10
14秒前
安静的难破完成签到 ,获得积分10
15秒前
攀攀关注了科研通微信公众号
15秒前
yufanhui应助lilili采纳,获得10
15秒前
香蕉觅云应助yg采纳,获得10
16秒前
小二郎应助大力的诗蕾采纳,获得10
16秒前
16秒前
16秒前
柴郡喵发布了新的文献求助10
16秒前
英俊的铭应助masonzhang采纳,获得10
18秒前
19秒前
脑洞疼应助KEYANMINGONG采纳,获得10
20秒前
星辰大海应助魏笑白采纳,获得10
20秒前
研友_VZG7GZ应助shen采纳,获得10
21秒前
且听风吟发布了新的文献求助10
21秒前
hai发布了新的文献求助30
21秒前
青尧完成签到,获得积分20
21秒前
22秒前
大龄中二病应助远方采纳,获得10
22秒前
坚强书琴发布了新的文献求助200
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135145
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775648
捐赠科研通 2441991
什么是DOI,文献DOI怎么找? 1298332
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600845