Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing

断层(地质) 计算机科学 方位(导航) 可靠性(半导体) 数据挖掘 领域知识 可靠性工程 工程类 控制工程 人工智能 机器学习 量子力学 物理 地质学 功率(物理) 地震学
作者
Yongchao Zhang,Jinchen Ji,Zhaohui Ren,Qing Ni,Fengshou Gu,Ke Feng,Kun Yu,Jian Ge,Zihao Lei,Zheng Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:234: 109186-109186 被引量:275
标识
DOI:10.1016/j.ress.2023.109186
摘要

Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which plays a vital role in guaranteeing the reliability, safety, and economical efficiency of mechanical systems. Traditional data-driven fault diagnosis methods require obtaining a dataset of full failure modes in advance as the training data. However, this kind of dataset is not always available in some critical industrial scenarios, which impairs the practicability of the data-driven fault diagnosis methods for various applications. A digital twin, which establishes a virtual representation of a physical entity to mirror its operating conditions, would make fault diagnosis of rolling bearings feasible when the fault data are insufficient. In this paper, we propose a novel digital twin-driven approach for implementing fault diagnosis of rolling bearings with insufficient training data. First, a dynamics-based virtual representation of rolling bearings is built to generate simulated data. Then, a Transformer-based network is developed to learn the knowledge of the simulated data for diagnostics. Meanwhile, a selective adversarial strategy is introduced to achieve cross-domain feature alignments in scenarios where the health conditions of the measured data are unknown. To this end, this study proposes a digital twin-driven fault diagnosis framework by using labeled simulated data and unlabeled measured data. The experimental results show that the proposed method can obtain high diagnostic performance when the real-world data is unlabeled and has unknown health conditions, proving that the proposed method has significant benefits for the health management of critical rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ying完成签到,获得积分10
刚刚
刚刚
xiaoxu完成签到,获得积分10
刚刚
运气爆彭完成签到,获得积分10
1秒前
传奇3应助Kleen采纳,获得10
1秒前
隐形的星月完成签到,获得积分10
1秒前
煎饼果子完成签到 ,获得积分10
1秒前
缓慢千易完成签到,获得积分10
2秒前
qiuziyun完成签到,获得积分10
2秒前
LmyHusband完成签到,获得积分10
2秒前
Jincen发布了新的文献求助10
3秒前
研友_24789完成签到,获得积分10
3秒前
文献啊文献完成签到,获得积分10
3秒前
HMO_eee发布了新的文献求助10
3秒前
Kelly完成签到,获得积分10
4秒前
大模型应助布丁圆团采纳,获得10
5秒前
不想科研完成签到,获得积分10
5秒前
宣以晴完成签到,获得积分10
6秒前
雨辰完成签到 ,获得积分10
6秒前
小瓢虫完成签到 ,获得积分10
6秒前
俭朴的乐巧完成签到 ,获得积分10
6秒前
littlejin完成签到 ,获得积分10
6秒前
薛定谔的猫爱摸鱼完成签到,获得积分10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
可靠的难胜完成签到,获得积分10
8秒前
魔女完成签到,获得积分10
8秒前
慈祥的花瓣完成签到,获得积分10
8秒前
雪花完成签到,获得积分10
9秒前
单薄乐珍完成签到 ,获得积分0
9秒前
shugefuhe完成签到,获得积分10
9秒前
kelakola完成签到,获得积分10
9秒前
tiezhu发布了新的文献求助10
9秒前
吕万鹏完成签到,获得积分10
9秒前
9秒前
aishangkeyan发布了新的文献求助10
10秒前
大气的向松完成签到 ,获得积分10
10秒前
10秒前
Liu完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977