Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing

断层(地质) 计算机科学 方位(导航) 可靠性(半导体) 数据挖掘 领域知识 可靠性工程 工程类 控制工程 人工智能 机器学习 量子力学 物理 地质学 功率(物理) 地震学
作者
Yongchao Zhang,Jinchen Ji,Zhaohui Ren,Qing Ni,Fengshou Gu,Ke Feng,Kun Yu,Jian Ge,Zihao Lei,Zheng Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:234: 109186-109186 被引量:226
标识
DOI:10.1016/j.ress.2023.109186
摘要

Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which plays a vital role in guaranteeing the reliability, safety, and economical efficiency of mechanical systems. Traditional data-driven fault diagnosis methods require obtaining a dataset of full failure modes in advance as the training data. However, this kind of dataset is not always available in some critical industrial scenarios, which impairs the practicability of the data-driven fault diagnosis methods for various applications. A digital twin, which establishes a virtual representation of a physical entity to mirror its operating conditions, would make fault diagnosis of rolling bearings feasible when the fault data are insufficient. In this paper, we propose a novel digital twin-driven approach for implementing fault diagnosis of rolling bearings with insufficient training data. First, a dynamics-based virtual representation of rolling bearings is built to generate simulated data. Then, a Transformer-based network is developed to learn the knowledge of the simulated data for diagnostics. Meanwhile, a selective adversarial strategy is introduced to achieve cross-domain feature alignments in scenarios where the health conditions of the measured data are unknown. To this end, this study proposes a digital twin-driven fault diagnosis framework by using labeled simulated data and unlabeled measured data. The experimental results show that the proposed method can obtain high diagnostic performance when the real-world data is unlabeled and has unknown health conditions, proving that the proposed method has significant benefits for the health management of critical rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
blessed兰发布了新的文献求助10
1秒前
1秒前
CodeCraft应助乐观曼凝采纳,获得10
1秒前
1秒前
2秒前
沿途一天完成签到,获得积分10
2秒前
3秒前
3秒前
yang发布了新的文献求助10
4秒前
Raven完成签到 ,获得积分10
4秒前
大模型应助MengDS采纳,获得10
4秒前
4秒前
靓仔要亮发布了新的文献求助10
4秒前
懦弱的雁芙完成签到,获得积分10
5秒前
coffeecoffee完成签到,获得积分10
5秒前
小狗曲奇饼干完成签到,获得积分10
5秒前
受伤芝麻完成签到,获得积分10
5秒前
月宸完成签到,获得积分10
5秒前
6秒前
6秒前
daishuyue完成签到 ,获得积分10
7秒前
体贴的立果完成签到,获得积分10
7秒前
谭访冬发布了新的文献求助10
8秒前
清脆的代芹应助谨慎尔风采纳,获得10
8秒前
8秒前
李爱国应助cuizhiyu采纳,获得10
8秒前
9秒前
LouisHyh发布了新的文献求助30
9秒前
pbj发布了新的文献求助10
9秒前
Charley发布了新的文献求助100
9秒前
英俊的铭应助Nora采纳,获得10
10秒前
螺旋飞天放屁完成签到,获得积分10
10秒前
烟柳画桥完成签到,获得积分10
11秒前
潇洒觅露关注了科研通微信公众号
11秒前
12秒前
科目三应助自由的凛采纳,获得10
12秒前
13秒前
谭访冬完成签到,获得积分10
13秒前
热心梦安完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4989049
求助须知:如何正确求助?哪些是违规求助? 4238394
关于积分的说明 13202581
捐赠科研通 4032385
什么是DOI,文献DOI怎么找? 2206102
邀请新用户注册赠送积分活动 1217397
关于科研通互助平台的介绍 1135604