Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing

断层(地质) 计算机科学 方位(导航) 可靠性(半导体) 数据挖掘 领域知识 可靠性工程 工程类 控制工程 人工智能 机器学习 量子力学 物理 地质学 功率(物理) 地震学
作者
Yongchao Zhang,Jinchen Ji,Zhaohui Ren,Qing Ni,Fengshou Gu,Ke Feng,Kun Yu,Jian Ge,Zihao Lei,Zheng Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:234: 109186-109186 被引量:275
标识
DOI:10.1016/j.ress.2023.109186
摘要

Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which plays a vital role in guaranteeing the reliability, safety, and economical efficiency of mechanical systems. Traditional data-driven fault diagnosis methods require obtaining a dataset of full failure modes in advance as the training data. However, this kind of dataset is not always available in some critical industrial scenarios, which impairs the practicability of the data-driven fault diagnosis methods for various applications. A digital twin, which establishes a virtual representation of a physical entity to mirror its operating conditions, would make fault diagnosis of rolling bearings feasible when the fault data are insufficient. In this paper, we propose a novel digital twin-driven approach for implementing fault diagnosis of rolling bearings with insufficient training data. First, a dynamics-based virtual representation of rolling bearings is built to generate simulated data. Then, a Transformer-based network is developed to learn the knowledge of the simulated data for diagnostics. Meanwhile, a selective adversarial strategy is introduced to achieve cross-domain feature alignments in scenarios where the health conditions of the measured data are unknown. To this end, this study proposes a digital twin-driven fault diagnosis framework by using labeled simulated data and unlabeled measured data. The experimental results show that the proposed method can obtain high diagnostic performance when the real-world data is unlabeled and has unknown health conditions, proving that the proposed method has significant benefits for the health management of critical rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白菜发布了新的文献求助20
1秒前
CodeCraft应助怕黑的乐蓉采纳,获得10
1秒前
gsl发布了新的文献求助10
1秒前
1秒前
1秒前
Owen应助南音采纳,获得10
2秒前
桐桐应助南音采纳,获得10
2秒前
bkagyin应助南音采纳,获得10
2秒前
充电宝应助南音采纳,获得10
2秒前
善学以致用应助南音采纳,获得10
2秒前
完美世界应助南音采纳,获得10
2秒前
SciGPT应助南音采纳,获得10
2秒前
共享精神应助南音采纳,获得10
2秒前
Hello应助南音采纳,获得10
2秒前
缓慢的高山应助南音采纳,获得10
2秒前
彭于晏应助我只吃一碗采纳,获得10
2秒前
zack发布了新的文献求助10
3秒前
科研通AI2S应助刻苦的幼晴采纳,获得10
3秒前
斯文网络完成签到,获得积分10
3秒前
hautzhl完成签到,获得积分10
3秒前
3秒前
4秒前
eason发布了新的文献求助10
5秒前
忙与闲都伤完成签到,获得积分10
5秒前
5秒前
chillax发布了新的文献求助10
5秒前
机智完成签到,获得积分20
5秒前
段辉发布了新的文献求助10
6秒前
优雅山柏完成签到,获得积分10
6秒前
6秒前
英俊的铭应助羊玉林采纳,获得10
6秒前
123发布了新的文献求助10
7秒前
7秒前
海咲umi发布了新的文献求助10
8秒前
8秒前
hanshishengye完成签到 ,获得积分10
8秒前
王迪发布了新的文献求助10
8秒前
美好斓发布了新的文献求助10
9秒前
9秒前
Stella应助Clover04采纳,获得10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587595
求助须知:如何正确求助?哪些是违规求助? 4670789
关于积分的说明 14784044
捐赠科研通 4623168
什么是DOI,文献DOI怎么找? 2531360
邀请新用户注册赠送积分活动 1500028
关于科研通互助平台的介绍 1468099