Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing

断层(地质) 计算机科学 方位(导航) 可靠性(半导体) 数据挖掘 领域知识 可靠性工程 工程类 控制工程 人工智能 机器学习 量子力学 物理 地质学 功率(物理) 地震学
作者
Yongchao Zhang,Jinchen Ji,Zhaohui Ren,Qing Ni,Fengshou Gu,Ke Feng,Kun Yu,Jian Ge,Zihao Lei,Zheng Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:234: 109186-109186 被引量:275
标识
DOI:10.1016/j.ress.2023.109186
摘要

Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which plays a vital role in guaranteeing the reliability, safety, and economical efficiency of mechanical systems. Traditional data-driven fault diagnosis methods require obtaining a dataset of full failure modes in advance as the training data. However, this kind of dataset is not always available in some critical industrial scenarios, which impairs the practicability of the data-driven fault diagnosis methods for various applications. A digital twin, which establishes a virtual representation of a physical entity to mirror its operating conditions, would make fault diagnosis of rolling bearings feasible when the fault data are insufficient. In this paper, we propose a novel digital twin-driven approach for implementing fault diagnosis of rolling bearings with insufficient training data. First, a dynamics-based virtual representation of rolling bearings is built to generate simulated data. Then, a Transformer-based network is developed to learn the knowledge of the simulated data for diagnostics. Meanwhile, a selective adversarial strategy is introduced to achieve cross-domain feature alignments in scenarios where the health conditions of the measured data are unknown. To this end, this study proposes a digital twin-driven fault diagnosis framework by using labeled simulated data and unlabeled measured data. The experimental results show that the proposed method can obtain high diagnostic performance when the real-world data is unlabeled and has unknown health conditions, proving that the proposed method has significant benefits for the health management of critical rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cynicism发布了新的文献求助10
1秒前
Snow完成签到,获得积分10
1秒前
子车茗应助洛苏采纳,获得20
1秒前
栓Q发布了新的文献求助10
2秒前
2秒前
浮游应助HHHHH采纳,获得10
4秒前
4秒前
嗯呢完成签到 ,获得积分10
4秒前
铁铁完成签到,获得积分10
4秒前
5秒前
个性的智宸完成签到,获得积分10
5秒前
7秒前
充电宝应助流云采纳,获得10
7秒前
伟峰完成签到,获得积分10
8秒前
8秒前
十月_i发布了新的文献求助20
8秒前
田様应助迷路的曼凡采纳,获得10
8秒前
9秒前
9秒前
9秒前
杨秋芸发布了新的文献求助10
9秒前
pluto应助漂亮的孤丹采纳,获得10
10秒前
10秒前
所所应助大鸟依人采纳,获得10
10秒前
11秒前
Vicki发布了新的文献求助10
11秒前
远方完成签到,获得积分10
11秒前
小沈最美完成签到,获得积分10
11秒前
张一凡完成签到,获得积分10
12秒前
科研通AI6应助阿斌采纳,获得10
13秒前
维他奶发布了新的文献求助10
13秒前
13秒前
yukiytii关注了科研通微信公众号
13秒前
13秒前
14秒前
drughunter009完成签到 ,获得积分10
14秒前
yiyi131发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343316
求助须知:如何正确求助?哪些是违规求助? 4478987
关于积分的说明 13941205
捐赠科研通 4375914
什么是DOI,文献DOI怎么找? 2404365
邀请新用户注册赠送积分活动 1396915
关于科研通互助平台的介绍 1369240