材料科学
光电探测器
响应度
光电子学
石墨烯
异质结
光电流
带隙
红外线的
比探测率
光学
纳米技术
物理
作者
Suvadip Masanta,Chumki Nayak,Pooja Agarwal,Kaustuv Das,Achintya Singha
标识
DOI:10.1021/acsami.2c20707
摘要
Transition metal dichalcogenides (TMDCs) are potential two-dimentional materials as natural partners of graphene for highly responsive van der Waals (vdW) heterostructure photodetectors. However, the spectral detection range of the detectors is limited by the optical bandgap of the TMDC, which acts as a light-absorbing medium. Bandgap engineering by making alloy TMDC has evolved as a suitable approach for the development of wide-band photodetectors. Here, broadband (visible to near-infrared) photodetection with high sensitivity in the near-infrared region is demonstrated in a MoSSe/graphene heterostructure. In the ambient environment, the photodetector exhibits high responsivity of 0.6 × 102 A/W and detectivity of 7.9 × 1011 Jones at 800 nm excitation with a power density of 17 fW/μm2 and 10 mV source–drain bias. The photodetector shows appreciable responsivity in self-bias mode due to nonuniform distribution of MoSSe flakes on the graphene layer between the source and drain end and the asymmetry between the two electrodes. Time-dependent photocurrent measurements show fast rise/decay times of ∼38 ms/∼48 ms. A significant gate tunability on the efficiency of the detector has been demonstrated. The device is capable of low power detection and exhibits high operational frequency, gain, and bandwidth. Thus, the MoSSe/graphene heterostructure can be a promising candidate as a high-speed and highly sensitive near-infrared photodetector capable of operating at ambient conditions with low energy consumption.
科研通智能强力驱动
Strongly Powered by AbleSci AI