Radiogenomic classification for MGMT promoter methylation status using multi-omics fused feature space for least invasive diagnosis through mpMRI scans

人工智能 支持向量机 特征提取 模式识别(心理学) 胶质母细胞瘤 特征(语言学) 计算机科学 医学 机器学习 癌症研究 语言学 哲学
作者
Shahzad Ahmad Qureshi,Lal Hussain,Usama Ibrar,Eatedal Alabdulkreem,Mohamed K. Nour,Mohammed S. Alqahtani,Faisal Mohammed Nafie,Abdullah Mohamed,Gouse Pasha Mohammed,Timothy Q. Duong
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:29
标识
DOI:10.1038/s41598-023-30309-4
摘要

Accurate radiogenomic classification of brain tumors is important to improve the standard of diagnosis, prognosis, and treatment planning for patients with glioblastoma. In this study, we propose a novel two-stage MGMT Promoter Methylation Prediction (MGMT-PMP) system that extracts latent features fused with radiomic features predicting the genetic subtype of glioblastoma. A novel fine-tuned deep learning architecture, namely Deep Learning Radiomic Feature Extraction (DLRFE) module, is proposed for latent feature extraction that fuses the quantitative knowledge to the spatial distribution and the size of tumorous structure through radiomic features: (GLCM, HOG, and LBP). The application of the novice rejection algorithm has been found significantly effective in selecting and isolating the negative training instances out of the original dataset. The fused feature vectors are then used for training and testing by k-NN and SVM classifiers. The 2021 RSNA Brain Tumor challenge dataset (BraTS-2021) consists of four structural mpMRIs, viz. fluid-attenuated inversion-recovery, T1-weighted, T1-weighted contrast enhancement, and T2-weighted. We evaluated the classification performance, for the very first time in published form, in terms of measures like accuracy, F1-score, and Matthews correlation coefficient. The Jackknife tenfold cross-validation was used for training and testing BraTS-2021 dataset validation. The highest classification performance is (96.84 ± 0.09)%, (96.08 ± 0.10)%, and (97.44 ± 0.14)% as accuracy, sensitivity, and specificity respectively to detect MGMT methylation status for patients suffering from glioblastoma. Deep learning feature extraction with radiogenomic features, fusing imaging phenotypes and molecular structure, using rejection algorithm has been found to perform outclass capable of detecting MGMT methylation status of glioblastoma patients. The approach relates the genomic variation with radiomic features forming a bridge between two areas of research that may prove useful for clinical treatment planning leading to better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小郑完成签到,获得积分10
刚刚
CipherSage应助熊boy采纳,获得10
刚刚
XXGG完成签到 ,获得积分10
1秒前
大个应助舒心赛凤采纳,获得10
1秒前
晨曦发布了新的文献求助10
2秒前
2秒前
ff0110完成签到,获得积分10
3秒前
星辰大海应助苹果萧采纳,获得10
3秒前
徐徐完成签到,获得积分10
3秒前
哈哈哈哈发布了新的文献求助10
4秒前
请叫我风吹麦浪应助yoon采纳,获得10
4秒前
认真的青柠完成签到,获得积分10
4秒前
bbanshan完成签到,获得积分10
4秒前
卫生纸发布了新的文献求助10
4秒前
4秒前
5秒前
奔奔完成签到,获得积分10
5秒前
脑洞疼应助李来仪采纳,获得10
6秒前
6秒前
6秒前
demonox发布了新的文献求助10
6秒前
jbhb发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
范月月完成签到 ,获得积分10
9秒前
默默的皮牙子应助Rrr采纳,获得10
9秒前
默默的皮牙子应助Rrr采纳,获得10
9秒前
机智苗完成签到,获得积分10
9秒前
10秒前
小油条完成签到,获得积分10
11秒前
马保国123发布了新的文献求助10
11秒前
wanci应助晨曦采纳,获得10
11秒前
潇洒的翠丝完成签到,获得积分20
11秒前
Frank完成签到,获得积分10
11秒前
子车代芙完成签到,获得积分10
11秒前
陌路发布了新的文献求助10
12秒前
猪猪hero发布了新的文献求助10
13秒前
灵巧荆发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794