Radiogenomic classification for MGMT promoter methylation status using multi-omics fused feature space for least invasive diagnosis through mpMRI scans

人工智能 支持向量机 特征提取 模式识别(心理学) 胶质母细胞瘤 特征(语言学) 计算机科学 医学 机器学习 癌症研究 语言学 哲学
作者
Shahzad Ahmad Qureshi,Lal Hussain,Usama Ibrar,Eatedal Alabdulkreem,Mohamed K. Nour,Mohammed S. Alqahtani,Faisal Mohammed Nafie,Abdullah Mohamed,Gouse Pasha Mohammed,Timothy Q. Duong
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:29
标识
DOI:10.1038/s41598-023-30309-4
摘要

Accurate radiogenomic classification of brain tumors is important to improve the standard of diagnosis, prognosis, and treatment planning for patients with glioblastoma. In this study, we propose a novel two-stage MGMT Promoter Methylation Prediction (MGMT-PMP) system that extracts latent features fused with radiomic features predicting the genetic subtype of glioblastoma. A novel fine-tuned deep learning architecture, namely Deep Learning Radiomic Feature Extraction (DLRFE) module, is proposed for latent feature extraction that fuses the quantitative knowledge to the spatial distribution and the size of tumorous structure through radiomic features: (GLCM, HOG, and LBP). The application of the novice rejection algorithm has been found significantly effective in selecting and isolating the negative training instances out of the original dataset. The fused feature vectors are then used for training and testing by k-NN and SVM classifiers. The 2021 RSNA Brain Tumor challenge dataset (BraTS-2021) consists of four structural mpMRIs, viz. fluid-attenuated inversion-recovery, T1-weighted, T1-weighted contrast enhancement, and T2-weighted. We evaluated the classification performance, for the very first time in published form, in terms of measures like accuracy, F1-score, and Matthews correlation coefficient. The Jackknife tenfold cross-validation was used for training and testing BraTS-2021 dataset validation. The highest classification performance is (96.84 ± 0.09)%, (96.08 ± 0.10)%, and (97.44 ± 0.14)% as accuracy, sensitivity, and specificity respectively to detect MGMT methylation status for patients suffering from glioblastoma. Deep learning feature extraction with radiogenomic features, fusing imaging phenotypes and molecular structure, using rejection algorithm has been found to perform outclass capable of detecting MGMT methylation status of glioblastoma patients. The approach relates the genomic variation with radiomic features forming a bridge between two areas of research that may prove useful for clinical treatment planning leading to better outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫的初丹完成签到,获得积分10
刚刚
刚刚
刚刚
我是老大应助zhihui采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
momosijia发布了新的文献求助10
3秒前
3秒前
自信晟睿发布了新的文献求助10
3秒前
平淡雪枫完成签到 ,获得积分10
3秒前
LS31发布了新的文献求助20
4秒前
Tingyu完成签到,获得积分10
4秒前
小欣发布了新的文献求助10
4秒前
LewisAcid举报量子星尘求助涉嫌违规
5秒前
5秒前
HLL发布了新的文献求助10
5秒前
Ethanyoyo0917完成签到,获得积分10
6秒前
6秒前
大气怜烟发布了新的文献求助10
6秒前
无极微光应助唯昭采纳,获得20
6秒前
6秒前
kong溪1002发布了新的文献求助10
6秒前
研友_ZrlaXL完成签到,获得积分10
7秒前
在水一方应助修狗儿采纳,获得10
7秒前
华仔应助双儿采纳,获得10
7秒前
李运发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
哈哈完成签到 ,获得积分10
8秒前
文耳东发布了新的文献求助10
8秒前
8秒前
hihi完成签到 ,获得积分10
8秒前
FL发布了新的文献求助30
9秒前
enen发布了新的文献求助10
9秒前
9秒前
无极微光应助hahha采纳,获得20
9秒前
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066