亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiogenomic classification for MGMT promoter methylation status using multi-omics fused feature space for least invasive diagnosis through mpMRI scans

人工智能 支持向量机 特征提取 模式识别(心理学) 胶质母细胞瘤 特征(语言学) 计算机科学 医学 机器学习 癌症研究 语言学 哲学
作者
Shahzad Ahmad Qureshi,Lal Hussain,Usama Ibrar,Eatedal Alabdulkreem,Mohamed K. Nour,Mohammed S. Alqahtani,Faisal Mohammed Nafie,Abdullah Mohamed,Gouse Pasha Mohammed,Timothy Q. Duong
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:29
标识
DOI:10.1038/s41598-023-30309-4
摘要

Accurate radiogenomic classification of brain tumors is important to improve the standard of diagnosis, prognosis, and treatment planning for patients with glioblastoma. In this study, we propose a novel two-stage MGMT Promoter Methylation Prediction (MGMT-PMP) system that extracts latent features fused with radiomic features predicting the genetic subtype of glioblastoma. A novel fine-tuned deep learning architecture, namely Deep Learning Radiomic Feature Extraction (DLRFE) module, is proposed for latent feature extraction that fuses the quantitative knowledge to the spatial distribution and the size of tumorous structure through radiomic features: (GLCM, HOG, and LBP). The application of the novice rejection algorithm has been found significantly effective in selecting and isolating the negative training instances out of the original dataset. The fused feature vectors are then used for training and testing by k-NN and SVM classifiers. The 2021 RSNA Brain Tumor challenge dataset (BraTS-2021) consists of four structural mpMRIs, viz. fluid-attenuated inversion-recovery, T1-weighted, T1-weighted contrast enhancement, and T2-weighted. We evaluated the classification performance, for the very first time in published form, in terms of measures like accuracy, F1-score, and Matthews correlation coefficient. The Jackknife tenfold cross-validation was used for training and testing BraTS-2021 dataset validation. The highest classification performance is (96.84 ± 0.09)%, (96.08 ± 0.10)%, and (97.44 ± 0.14)% as accuracy, sensitivity, and specificity respectively to detect MGMT methylation status for patients suffering from glioblastoma. Deep learning feature extraction with radiogenomic features, fusing imaging phenotypes and molecular structure, using rejection algorithm has been found to perform outclass capable of detecting MGMT methylation status of glioblastoma patients. The approach relates the genomic variation with radiomic features forming a bridge between two areas of research that may prove useful for clinical treatment planning leading to better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hellogene完成签到,获得积分10
8秒前
xyx完成签到,获得积分20
10秒前
忍蛙发布了新的文献求助10
15秒前
Lizhe发布了新的文献求助10
15秒前
大个应助ceeray23采纳,获得20
32秒前
土豪的摩托完成签到 ,获得积分10
56秒前
俏皮的安萱完成签到 ,获得积分10
1分钟前
Lizhe发布了新的文献求助10
1分钟前
1分钟前
kd1412应助Lizhe采纳,获得10
1分钟前
科研通AI2S应助Lizhe采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
wanjingwan完成签到 ,获得积分10
1分钟前
1分钟前
忍蛙完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
2分钟前
AXLL完成签到 ,获得积分10
2分钟前
2分钟前
叁月发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ceeray23发布了新的文献求助20
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
HS完成签到,获得积分10
3分钟前
abc完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
魁梧的盼雁完成签到,获得积分10
4分钟前
4分钟前
楠楠2001完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Allen0520完成签到,获得积分10
4分钟前
4分钟前
852应助fht采纳,获得10
4分钟前
优美的谷完成签到,获得积分10
5分钟前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
宽量程高线性度柔性压力传感器的逆向设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980873
求助须知:如何正确求助?哪些是违规求助? 3524650
关于积分的说明 11222312
捐赠科研通 3262111
什么是DOI,文献DOI怎么找? 1801072
邀请新用户注册赠送积分活动 879595
科研通“疑难数据库(出版商)”最低求助积分说明 807429