Radiogenomic classification for MGMT promoter methylation status using multi-omics fused feature space for least invasive diagnosis through mpMRI scans

人工智能 支持向量机 特征提取 模式识别(心理学) 胶质母细胞瘤 特征(语言学) 计算机科学 医学 机器学习 癌症研究 语言学 哲学
作者
Shahzad Ahmad Qureshi,Lal Hussain,Usama Ibrar,Eatedal Alabdulkreem,Mohamed K. Nour,Mohammed S. Alqahtani,Faisal Mohammed Nafie,Abdullah Mohamed,Gouse Pasha Mohammed,Timothy Q. Duong
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:29
标识
DOI:10.1038/s41598-023-30309-4
摘要

Accurate radiogenomic classification of brain tumors is important to improve the standard of diagnosis, prognosis, and treatment planning for patients with glioblastoma. In this study, we propose a novel two-stage MGMT Promoter Methylation Prediction (MGMT-PMP) system that extracts latent features fused with radiomic features predicting the genetic subtype of glioblastoma. A novel fine-tuned deep learning architecture, namely Deep Learning Radiomic Feature Extraction (DLRFE) module, is proposed for latent feature extraction that fuses the quantitative knowledge to the spatial distribution and the size of tumorous structure through radiomic features: (GLCM, HOG, and LBP). The application of the novice rejection algorithm has been found significantly effective in selecting and isolating the negative training instances out of the original dataset. The fused feature vectors are then used for training and testing by k-NN and SVM classifiers. The 2021 RSNA Brain Tumor challenge dataset (BraTS-2021) consists of four structural mpMRIs, viz. fluid-attenuated inversion-recovery, T1-weighted, T1-weighted contrast enhancement, and T2-weighted. We evaluated the classification performance, for the very first time in published form, in terms of measures like accuracy, F1-score, and Matthews correlation coefficient. The Jackknife tenfold cross-validation was used for training and testing BraTS-2021 dataset validation. The highest classification performance is (96.84 ± 0.09)%, (96.08 ± 0.10)%, and (97.44 ± 0.14)% as accuracy, sensitivity, and specificity respectively to detect MGMT methylation status for patients suffering from glioblastoma. Deep learning feature extraction with radiogenomic features, fusing imaging phenotypes and molecular structure, using rejection algorithm has been found to perform outclass capable of detecting MGMT methylation status of glioblastoma patients. The approach relates the genomic variation with radiomic features forming a bridge between two areas of research that may prove useful for clinical treatment planning leading to better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚辰完成签到,获得积分10
1秒前
leotao完成签到,获得积分10
2秒前
safari完成签到 ,获得积分10
5秒前
孙小懒完成签到,获得积分10
5秒前
啷个吃不饱完成签到 ,获得积分10
6秒前
NIHAO完成签到 ,获得积分10
7秒前
每天都很忙完成签到 ,获得积分10
7秒前
大可完成签到 ,获得积分10
7秒前
要减肥的山灵完成签到,获得积分10
8秒前
LaLaC完成签到,获得积分10
9秒前
传奇3应助shouyu29采纳,获得10
9秒前
wqk完成签到,获得积分10
9秒前
丰富的大地完成签到,获得积分10
9秒前
lee完成签到 ,获得积分0
9秒前
zhangjianzeng完成签到 ,获得积分10
10秒前
端庄的凌旋完成签到,获得积分10
11秒前
俞无声完成签到 ,获得积分10
11秒前
不系舟完成签到,获得积分10
14秒前
14秒前
15秒前
无辜的忘幽完成签到,获得积分10
16秒前
无奈白竹完成签到,获得积分10
16秒前
Ava应助简单采纳,获得10
17秒前
悦耳冰蓝完成签到,获得积分10
17秒前
sa0022完成签到,获得积分10
17秒前
w0304hf完成签到,获得积分10
18秒前
缥缈的冰旋完成签到,获得积分10
18秒前
高高完成签到 ,获得积分10
19秒前
森sen完成签到 ,获得积分10
19秒前
AskNature完成签到,获得积分10
21秒前
墨瞳完成签到,获得积分10
21秒前
钟小先生完成签到 ,获得积分10
23秒前
东晓完成签到,获得积分10
24秒前
YT完成签到,获得积分10
25秒前
温暖的沛凝完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
会飞的流氓兔完成签到 ,获得积分10
29秒前
张zzz完成签到,获得积分10
32秒前
灵巧谷波完成签到,获得积分10
34秒前
咕噜噜咕噜完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482688
求助须知:如何正确求助?哪些是违规求助? 4583423
关于积分的说明 14389428
捐赠科研通 4512663
什么是DOI,文献DOI怎么找? 2473166
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432842