Radiogenomic classification for MGMT promoter methylation status using multi-omics fused feature space for least invasive diagnosis through mpMRI scans

人工智能 支持向量机 特征提取 模式识别(心理学) 胶质母细胞瘤 特征(语言学) 计算机科学 医学 机器学习 癌症研究 语言学 哲学
作者
Shahzad Ahmad Qureshi,Lal Hussain,Usama Ibrar,Eatedal Alabdulkreem,Mohamed K. Nour,Mohammed S. Alqahtani,Faisal Mohammed Nafie,Abdullah Mohamed,Gouse Pasha Mohammed,Timothy Q. Duong
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:29
标识
DOI:10.1038/s41598-023-30309-4
摘要

Accurate radiogenomic classification of brain tumors is important to improve the standard of diagnosis, prognosis, and treatment planning for patients with glioblastoma. In this study, we propose a novel two-stage MGMT Promoter Methylation Prediction (MGMT-PMP) system that extracts latent features fused with radiomic features predicting the genetic subtype of glioblastoma. A novel fine-tuned deep learning architecture, namely Deep Learning Radiomic Feature Extraction (DLRFE) module, is proposed for latent feature extraction that fuses the quantitative knowledge to the spatial distribution and the size of tumorous structure through radiomic features: (GLCM, HOG, and LBP). The application of the novice rejection algorithm has been found significantly effective in selecting and isolating the negative training instances out of the original dataset. The fused feature vectors are then used for training and testing by k-NN and SVM classifiers. The 2021 RSNA Brain Tumor challenge dataset (BraTS-2021) consists of four structural mpMRIs, viz. fluid-attenuated inversion-recovery, T1-weighted, T1-weighted contrast enhancement, and T2-weighted. We evaluated the classification performance, for the very first time in published form, in terms of measures like accuracy, F1-score, and Matthews correlation coefficient. The Jackknife tenfold cross-validation was used for training and testing BraTS-2021 dataset validation. The highest classification performance is (96.84 ± 0.09)%, (96.08 ± 0.10)%, and (97.44 ± 0.14)% as accuracy, sensitivity, and specificity respectively to detect MGMT methylation status for patients suffering from glioblastoma. Deep learning feature extraction with radiogenomic features, fusing imaging phenotypes and molecular structure, using rejection algorithm has been found to perform outclass capable of detecting MGMT methylation status of glioblastoma patients. The approach relates the genomic variation with radiomic features forming a bridge between two areas of research that may prove useful for clinical treatment planning leading to better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽笑容完成签到 ,获得积分10
刚刚
江湖应助聪慧芷巧采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
Rjy完成签到 ,获得积分10
8秒前
性感母蟑螂完成签到 ,获得积分10
14秒前
ruochenzu完成签到,获得积分10
16秒前
陈尹蓝完成签到 ,获得积分10
17秒前
天道酬勤完成签到,获得积分10
19秒前
21秒前
仁爱的谷南完成签到,获得积分10
21秒前
雯雯完成签到 ,获得积分10
23秒前
一路有你完成签到 ,获得积分10
23秒前
24秒前
ruochenzu发布了新的文献求助10
24秒前
26秒前
wanghao完成签到 ,获得积分10
27秒前
图图发布了新的文献求助10
27秒前
十三完成签到 ,获得积分10
27秒前
聪慧芷巧完成签到,获得积分10
28秒前
米博士完成签到,获得积分10
29秒前
研友_VZGVzn完成签到,获得积分10
30秒前
Cheung2121发布了新的文献求助30
31秒前
黄芩完成签到 ,获得积分10
32秒前
49秒前
秋半梦完成签到,获得积分10
51秒前
李爱国应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
搜集达人应助科研通管家采纳,获得10
54秒前
打地鼠工人完成签到,获得积分10
55秒前
彩色半烟完成签到,获得积分10
57秒前
量子星尘发布了新的文献求助10
1分钟前
Ning完成签到,获得积分10
1分钟前
图图完成签到,获得积分10
1分钟前
勤奋的灯完成签到 ,获得积分10
1分钟前
ludong_0完成签到,获得积分10
1分钟前
Asumita完成签到,获得积分10
1分钟前
双青豆完成签到 ,获得积分10
1分钟前
1分钟前
fxy完成签到 ,获得积分10
1分钟前
合适的幻然完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022