Radiogenomic classification for MGMT promoter methylation status using multi-omics fused feature space for least invasive diagnosis through mpMRI scans

人工智能 支持向量机 特征提取 模式识别(心理学) 胶质母细胞瘤 特征(语言学) 计算机科学 医学 机器学习 癌症研究 语言学 哲学
作者
Shahzad Ahmad Qureshi,Lal Hussain,Usama Ibrar,Eatedal Alabdulkreem,Mohamed K. Nour,Mohammed S. Alqahtani,Faisal Mohammed Nafie,Abdullah Mohamed,Gouse Pasha Mohammed,Timothy Q. Duong
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:29
标识
DOI:10.1038/s41598-023-30309-4
摘要

Accurate radiogenomic classification of brain tumors is important to improve the standard of diagnosis, prognosis, and treatment planning for patients with glioblastoma. In this study, we propose a novel two-stage MGMT Promoter Methylation Prediction (MGMT-PMP) system that extracts latent features fused with radiomic features predicting the genetic subtype of glioblastoma. A novel fine-tuned deep learning architecture, namely Deep Learning Radiomic Feature Extraction (DLRFE) module, is proposed for latent feature extraction that fuses the quantitative knowledge to the spatial distribution and the size of tumorous structure through radiomic features: (GLCM, HOG, and LBP). The application of the novice rejection algorithm has been found significantly effective in selecting and isolating the negative training instances out of the original dataset. The fused feature vectors are then used for training and testing by k-NN and SVM classifiers. The 2021 RSNA Brain Tumor challenge dataset (BraTS-2021) consists of four structural mpMRIs, viz. fluid-attenuated inversion-recovery, T1-weighted, T1-weighted contrast enhancement, and T2-weighted. We evaluated the classification performance, for the very first time in published form, in terms of measures like accuracy, F1-score, and Matthews correlation coefficient. The Jackknife tenfold cross-validation was used for training and testing BraTS-2021 dataset validation. The highest classification performance is (96.84 ± 0.09)%, (96.08 ± 0.10)%, and (97.44 ± 0.14)% as accuracy, sensitivity, and specificity respectively to detect MGMT methylation status for patients suffering from glioblastoma. Deep learning feature extraction with radiogenomic features, fusing imaging phenotypes and molecular structure, using rejection algorithm has been found to perform outclass capable of detecting MGMT methylation status of glioblastoma patients. The approach relates the genomic variation with radiomic features forming a bridge between two areas of research that may prove useful for clinical treatment planning leading to better outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助LL采纳,获得10
刚刚
1秒前
丘比特应助xht采纳,获得10
1秒前
慕青应助四夕水窖采纳,获得10
1秒前
陈陈陈完成签到,获得积分10
1秒前
2秒前
今夜不设防完成签到,获得积分10
2秒前
小姜向阳开应助豆豆采纳,获得10
2秒前
3秒前
科研小白完成签到,获得积分10
3秒前
Zlucky完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
fsz发布了新的文献求助10
4秒前
4秒前
leeyu发布了新的文献求助30
4秒前
烟花应助斗宗强者采纳,获得10
4秒前
QLLW应助自由逐风采纳,获得10
4秒前
小马甲应助liuyang采纳,获得10
5秒前
5秒前
桃小昔完成签到,获得积分10
6秒前
张美美完成签到,获得积分10
6秒前
LH发布了新的文献求助10
7秒前
大白应助cqwswfl采纳,获得20
7秒前
万能图书馆应助王超采纳,获得10
7秒前
英姑应助雪白的西牛采纳,获得10
8秒前
zoe完成签到 ,获得积分10
8秒前
ROYXIONG完成签到 ,获得积分10
9秒前
今后应助健康的人生采纳,获得10
9秒前
科研小白发布了新的文献求助10
9秒前
9秒前
9秒前
无极微光应助等待安柏采纳,获得20
9秒前
10秒前
10秒前
高挑的冰露完成签到 ,获得积分10
10秒前
10秒前
搜集达人应助ExtroGod采纳,获得10
10秒前
doctor_loong完成签到,获得积分10
10秒前
幸福鞯发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653486
求助须知:如何正确求助?哪些是违规求助? 4790016
关于积分的说明 15064423
捐赠科研通 4812137
什么是DOI,文献DOI怎么找? 2574306
邀请新用户注册赠送积分活动 1529926
关于科研通互助平台的介绍 1488661