Radiogenomic classification for MGMT promoter methylation status using multi-omics fused feature space for least invasive diagnosis through mpMRI scans

人工智能 支持向量机 特征提取 模式识别(心理学) 胶质母细胞瘤 特征(语言学) 计算机科学 医学 机器学习 癌症研究 语言学 哲学
作者
Shahzad Ahmad Qureshi,Lal Hussain,Usama Ibrar,Eatedal Alabdulkreem,Mohamed K. Nour,Mohammed S. Alqahtani,Faisal Mohammed Nafie,Abdullah Mohamed,Gouse Pasha Mohammed,Timothy Q. Duong
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:29
标识
DOI:10.1038/s41598-023-30309-4
摘要

Accurate radiogenomic classification of brain tumors is important to improve the standard of diagnosis, prognosis, and treatment planning for patients with glioblastoma. In this study, we propose a novel two-stage MGMT Promoter Methylation Prediction (MGMT-PMP) system that extracts latent features fused with radiomic features predicting the genetic subtype of glioblastoma. A novel fine-tuned deep learning architecture, namely Deep Learning Radiomic Feature Extraction (DLRFE) module, is proposed for latent feature extraction that fuses the quantitative knowledge to the spatial distribution and the size of tumorous structure through radiomic features: (GLCM, HOG, and LBP). The application of the novice rejection algorithm has been found significantly effective in selecting and isolating the negative training instances out of the original dataset. The fused feature vectors are then used for training and testing by k-NN and SVM classifiers. The 2021 RSNA Brain Tumor challenge dataset (BraTS-2021) consists of four structural mpMRIs, viz. fluid-attenuated inversion-recovery, T1-weighted, T1-weighted contrast enhancement, and T2-weighted. We evaluated the classification performance, for the very first time in published form, in terms of measures like accuracy, F1-score, and Matthews correlation coefficient. The Jackknife tenfold cross-validation was used for training and testing BraTS-2021 dataset validation. The highest classification performance is (96.84 ± 0.09)%, (96.08 ± 0.10)%, and (97.44 ± 0.14)% as accuracy, sensitivity, and specificity respectively to detect MGMT methylation status for patients suffering from glioblastoma. Deep learning feature extraction with radiogenomic features, fusing imaging phenotypes and molecular structure, using rejection algorithm has been found to perform outclass capable of detecting MGMT methylation status of glioblastoma patients. The approach relates the genomic variation with radiomic features forming a bridge between two areas of research that may prove useful for clinical treatment planning leading to better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
半壶月色半边天完成签到 ,获得积分10
刚刚
思源应助xuxuxu采纳,获得10
刚刚
Sunny发布了新的文献求助10
刚刚
Amani_Nakupenda应助阿牛奶采纳,获得20
刚刚
jingjing发布了新的文献求助30
刚刚
刚刚
英姑应助王路飞采纳,获得10
1秒前
an12138发布了新的文献求助10
2秒前
2秒前
2秒前
happiness发布了新的文献求助10
2秒前
2秒前
2秒前
超越发布了新的文献求助10
2秒前
犹豫的芝麻完成签到 ,获得积分10
3秒前
ksq完成签到,获得积分10
3秒前
不挑食的Marcophages完成签到,获得积分10
3秒前
王逗逗完成签到,获得积分10
3秒前
科研通AI2S应助psl采纳,获得10
3秒前
傅全有完成签到,获得积分10
3秒前
dzp发布了新的文献求助10
4秒前
乐观三问发布了新的文献求助10
4秒前
独特觅儿完成签到,获得积分10
4秒前
Owen应助liiy采纳,获得10
4秒前
BBBBBlue先森应助Doris采纳,获得10
5秒前
大个应助yecheng采纳,获得10
5秒前
5秒前
5秒前
打工人发布了新的文献求助10
5秒前
李芳完成签到,获得积分10
5秒前
hzs发布了新的文献求助30
5秒前
nihao完成签到,获得积分10
5秒前
科研kkkkkkkk完成签到,获得积分10
6秒前
weiwenzuo发布了新的文献求助10
6秒前
敲敲应助欧欧欧导采纳,获得10
6秒前
6秒前
汉堡包应助ningqing采纳,获得10
6秒前
嗯哼大王完成签到,获得积分10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402461
求助须知:如何正确求助?哪些是违规求助? 4521103
关于积分的说明 14083816
捐赠科研通 4435114
什么是DOI,文献DOI怎么找? 2434563
邀请新用户注册赠送积分活动 1426697
关于科研通互助平台的介绍 1405445