Computational model for predicting the dynamic dissolution and evolution behaviors of gases in liquids

溶解 传质 饱和(图论) 热力学 氧气 体积流量 冷凝 机械 流量(数学) 化学 物理 物理化学 数学 组合数学 有机化学
作者
Zhipeng Ren,Deyou Li,Hongjie Wang,Jintao Liu,Yong Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (10) 被引量:13
标识
DOI:10.1063/5.0118794
摘要

Dynamic gas–liquid mass transfer behaviors are widely encountered in the chemical, environmental, and engineering fields. Referring to the Singhal full cavitation model, Henry's law, and Zhou's experiments, we innovatively developed a computational model for dissolved and released mass-transfer to revolutionize the independent unidirectional gas-to-liquid or liquid-to-gas theory. From a new perspective, coupled dissolution and evolution mechanisms were defined similar to how condensation and evaporation were redefined, where dissolution and release mass-transfer prediction methods that can be applied to three-dimensional calculations were integrated for the first time. The dissolved gas saturation concentration was the criterion for determining the direction of mass transfer. According to the theoretical derivation, the driving forces behind the dissolution and evolution are the remaining undissolved gas and real-time solution concentration, respectively. We confirmed the validity of the proposed dynamic model using an unsteady simulation after a grid independence study and an experimental verification of dissolved oxygen concentration in plug-discharge flow. The difference in dissolved oxygen concentration between simulations of this computational model and experiments could be low as 2.0%. A higher dissolved oxygen concentration was distributed in the flow separation and throat gas–liquid blocking zones, indicating that a surge in the flow velocity led to an increased mass transfer rate. In addition, a parametric study was conducted to consider the impact of the oxygen volume fraction and initial dissolved oxygen concentration on the real-time concentration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ntxlks完成签到,获得积分10
3秒前
yangyangyang完成签到,获得积分10
4秒前
老白非完成签到,获得积分10
4秒前
wipmzxu完成签到,获得积分10
6秒前
cccyyy完成签到,获得积分10
6秒前
6秒前
7秒前
默默的月光完成签到,获得积分10
7秒前
大个应助老白非采纳,获得10
7秒前
自然之水完成签到,获得积分10
8秒前
fifteen发布了新的文献求助10
8秒前
8秒前
9秒前
wwwwww发布了新的文献求助10
9秒前
9秒前
英俊丹秋发布了新的文献求助10
10秒前
11秒前
qudie发布了新的文献求助10
11秒前
8R60d8应助喜遇徐采纳,获得10
12秒前
早发论文应助Xiaoixa采纳,获得10
12秒前
12秒前
zuto吗喽发布了新的文献求助10
14秒前
小九九发布了新的文献求助10
14秒前
14秒前
lyx发布了新的文献求助30
15秒前
15秒前
16秒前
16秒前
闫伯涵发布了新的文献求助10
16秒前
清茶完成签到,获得积分10
17秒前
qudie完成签到,获得积分10
18秒前
FashionBoy应助大力翠丝采纳,获得10
18秒前
小青关注了科研通微信公众号
18秒前
19秒前
玉桂兔发布了新的文献求助10
19秒前
英姑应助左旋麦乐鸡采纳,获得10
20秒前
21秒前
24秒前
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160894
求助须知:如何正确求助?哪些是违规求助? 2812133
关于积分的说明 7894461
捐赠科研通 2470993
什么是DOI,文献DOI怎么找? 1315830
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068