葡萄园
葡萄孢菌
生物
砧木
葡萄栽培
葡萄
藤蔓
酿酒葡萄
园艺
修剪
栽培
苹果轮纹病
葡萄酒
植物
食品科学
作者
Monica N. Hernandez,Achala N. KC
出处
期刊:Plant Disease
[Scientific Societies]
日期:2023-05-01
卷期号:107 (5): 1355-1364
被引量:5
标识
DOI:10.1094/pdis-05-22-1220-re
摘要
Grapevine trunk diseases (GTDs) are found in vineyards worldwide and can be caused by different fungal pathogens. To characterize types of GTDs in Oregon vineyards, and how the GTD pathogens' prevalence is affected by two geographical regions, a survey was conducted in which grapevine trunk samples were collected from 15 and 14 wine grape (Vitis vinifera) vineyards in southern and northern Oregon, respectively. Fungal species were identified through culture and PCR-based methods. GTD pathogens that were identified included Botryosphaeriaceae spp. and Phaeoacremonium spp. from 72 and 21% of the surveyed vineyards, respectively; Phaeomoniella chlamydospora, Cryptovalsa ampelina, Truncatella angustata, Seimatosporium lichenicola, Hormonema viticola from 7% of the surveyed vineyards; and Dactylonectria macrodidyma, and Pestaloptiopsis sp. from 3% of the surveyed vineyards. Pathogens were identified in both regions and in young and mature vineyards. The presence of GTD from the Botryosphaeria dieback complex was significantly affected by regions (P = 0.021), with pathogens being significantly more abundant in Willamette Valley (northern region) compared with Rogue Valley (southern region) vineyards. Some differences among other tested variables such as vineyard age, cultivars, rootstocks, and pruning methods were observed for all disease complexes; however, the differences were not statistically significant. Our study summarizes that Botryosphaeria dieback and Esca disease complexes are the most prevalent diseases infecting grapevines in Oregon vineyards and management practices need to be geared toward these economically important diseases. In addition, pathogens from other disease complexes are also present, suggesting a need for regular disease monitoring and following practices to limit the spread of these pathogens.
科研通智能强力驱动
Strongly Powered by AbleSci AI