Cobalt doped ovoid magnetite (Fe3O4) nanocomposites incrusted on sheets of reduced graphene oxide as anode for sodium-ion batteries

石墨烯 材料科学 阳极 X射线光电子能谱 拉曼光谱 化学工程 氧化物 扫描电子显微镜 介电谱 纳米复合材料 纳米技术 电化学 分析化学(期刊) 电极 化学 复合材料 冶金 物理化学 工程类 物理 光学 色谱法
作者
Fakhra Marawat,Ghulam Ali,Afifa Sadaqat,Shumaila Karamat,Muhammad Nadeem,Ibtisam Ahmad,Uzma Khalique
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:929: 167318-167318
标识
DOI:10.1016/j.jallcom.2022.167318
摘要

Fe3O4 could be a better choice as anode for sodium-ion batteries (NIBs) due to high sodium ion storage capability and abundant resource. Yet, the low conductivity and severe volume expansion during cycling have fetched large defies towards practicality. In this work, an ovoid Fe3O4/rGO and (5%, 10%) cobalt doped Fe3O4/rGO nanocomposites were synthesized through one-step hydrothermal route. Structural, morphological chemical, vibrational, and compositional analysis have been employed using X-ray diffraction, Scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The results indicate the successful substitution of cationic Co2+ ions in Fe3O4 lattice. Hence, integration of optimal cobalt doping in Fe3O4 lattice can alter the charge/discharge specific capacity as compared to undoped Fe3O4-rGO anode. Due to sufficient production of oxygen vacancies in the structure 5% Co- Fe3O4/rGO reveals the highest initial charge capacity of 434 mAh g−1 at 0.05 C and exhibits stable prolonged cycling and delivers upto 303 mAh g−1 of charge capacity during 100 cycles (with 100% of CE and 72% of remaining capacity retention)as compared to 10% Co- Fe3O4/rGO (414 mAh g−1) and Fe3O4/rGO (357 mAh g−1) nanocomposite. Moreover, the Nyquist plot reveals the rapid transfer of charge for 5% Co- Fe3O4/rGO anode due to lowest charge transfer impedance of 56.5 Ω as compared to 10% Co- Fe3O4/rGO (114.3 Ω) and pristine Fe3O4/rGO (177.8 Ω). Therefore, the presence of rGO layers and the optimum doping of Co atoms in Fe3O4 crystal can curtail volume expansion, generate more contact sites for electrode/electrolyte, deep penetration of electrolyte into the electrode and can yield superior electrochemical performance via fast Na-ion diffusion rate. Sodium-ion batteries are a promising technology for electric vehicles, the energy grid and other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
马大翔应助遗迹小白采纳,获得1500
2秒前
3秒前
4秒前
小二郎应助米米米采纳,获得10
4秒前
梅列军完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
笑点低的雪冥完成签到,获得积分10
5秒前
漫秋霞舞完成签到,获得积分10
5秒前
苗条的凝雁完成签到,获得积分10
6秒前
种一棵星星完成签到,获得积分10
6秒前
复杂的甜瓜完成签到,获得积分10
6秒前
6秒前
蔡雨岑发布了新的文献求助150
6秒前
良良丸完成签到 ,获得积分10
7秒前
Lemon给Lemon的求助进行了留言
7秒前
7秒前
贪学傲菡发布了新的文献求助10
9秒前
9秒前
谭显芝发布了新的文献求助10
9秒前
陳新儒完成签到,获得积分10
9秒前
Lsy发布了新的文献求助10
10秒前
YuF发布了新的文献求助10
10秒前
苗条翠完成签到,获得积分10
10秒前
爆米花应助七因采纳,获得30
11秒前
LSS发布了新的文献求助10
12秒前
dff发布了新的文献求助20
13秒前
我是老大应助清风不渡夜采纳,获得10
16秒前
16秒前
xiongdi521完成签到,获得积分10
16秒前
18秒前
895_完成签到,获得积分10
19秒前
伴着星光归来完成签到,获得积分20
20秒前
Charail发布了新的文献求助10
21秒前
小蘑菇应助嘻嘻子采纳,获得10
21秒前
22秒前
star发布了新的文献求助10
22秒前
shallgun发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149141
求助须知:如何正确求助?哪些是违规求助? 2800201
关于积分的说明 7838971
捐赠科研通 2457756
什么是DOI,文献DOI怎么找? 1308090
科研通“疑难数据库(出版商)”最低求助积分说明 628392
版权声明 601706