Disease Progression Score Estimation From Multimodal Imaging and MicroRNA Data Using Supervised Variational Autoencoders

自编码 计算机科学 人工智能 机器学习 公制(单位) 失智症 疾病 痴呆 深度学习 医学 病理 运营管理 经济
作者
Virgilio Kmetzsch,E. Becker,Dario Saracino,Daisy Rinaldi,Agnès Camuzat,Isabelle Le Ber,Olivier Colliot
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6024-6035 被引量:8
标识
DOI:10.1109/jbhi.2022.3208517
摘要

Frontotemporal dementia and amyotrophic lateral sclerosis are rare neurodegenerative diseases with no effective treatment. The development of biomarkers allowing an accurate assessment of disease progression is crucial for evaluating new therapies. Concretely, neuroimaging and transcriptomic (microRNA) data have been shown useful in tracking their progression. However, no single biomarker can accurately measure progression in these complex diseases. Additionally, large samples are not available for such rare disorders. It is thus essential to develop methods that can model disease progression by combining multiple biomarkers from small samples. In this paper, we propose a new framework for computing a disease progression score (DPS) from cross-sectional multimodal data. Specifically, we introduce a supervised multimodal variational autoencoder that can infer a meaningful latent space, where latent representations are placed along a disease trajectory. A score is computed by orthogonal projections onto this path. We evaluate our framework with multiple synthetic datasets and with a real dataset containing 14 patients, 40 presymptomatic genetic mutation carriers and 37 controls from the PREV-DEMALS study. There is no ground truth for the DPS in real-world scenarios, therefore we use the area under the ROC curve (AUC) as a proxy metric. Results with the synthetic datasets support this choice, since the higher the AUC, the more accurate the predicted simulated DPS. Experiments with the real dataset demonstrate better performance in comparison with state-of-the-art approaches. The proposed framework thus leverages cross-sectional multimodal datasets with small sample sizes to objectively measure disease progression, with potential application in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
八戒鬼手完成签到,获得积分10
刚刚
哈哈哈完成签到,获得积分10
1秒前
srf0602.发布了新的文献求助10
1秒前
1秒前
AI孙燕姿完成签到,获得积分10
1秒前
2秒前
3秒前
哈哈哈发布了新的文献求助30
3秒前
左丘世立完成签到,获得积分10
5秒前
柠木完成签到,获得积分10
5秒前
橙c美式发布了新的文献求助10
6秒前
cctv18应助耶耶耶耶采纳,获得10
6秒前
6秒前
7秒前
悦耳溪流完成签到,获得积分10
8秒前
8秒前
赫灵竹完成签到,获得积分10
9秒前
LIU完成签到,获得积分10
9秒前
9秒前
9秒前
wangmin完成签到,获得积分10
11秒前
11秒前
12秒前
隐形曼青应助科研胖子采纳,获得10
13秒前
麦满分发布了新的文献求助10
13秒前
阳光明明完成签到 ,获得积分10
14秒前
15秒前
YuZheng发布了新的文献求助10
17秒前
阳光明明关注了科研通微信公众号
18秒前
18秒前
19秒前
19秒前
20秒前
于广喜发布了新的文献求助10
21秒前
A_123完成签到,获得积分10
21秒前
李爱国应助zztqaq采纳,获得10
21秒前
ZHENDAO发布了新的文献求助10
21秒前
Dou_Xiaowen发布了新的文献求助10
21秒前
伊雪儿完成签到,获得积分10
23秒前
小小牛发布了新的文献求助10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244208
求助须知:如何正确求助?哪些是违规求助? 2887923
关于积分的说明 8250569
捐赠科研通 2556491
什么是DOI,文献DOI怎么找? 1384754
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 626000