已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Disease Progression Score Estimation From Multimodal Imaging and MicroRNA Data Using Supervised Variational Autoencoders

自编码 计算机科学 人工智能 机器学习 公制(单位) 失智症 疾病 痴呆 深度学习 医学 病理 运营管理 经济
作者
Virgilio Kmetzsch,E. Becker,Dario Saracino,Daisy Rinaldi,Agnès Camuzat,Isabelle Le Ber,Olivier Colliot
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6024-6035 被引量:8
标识
DOI:10.1109/jbhi.2022.3208517
摘要

Frontotemporal dementia and amyotrophic lateral sclerosis are rare neurodegenerative diseases with no effective treatment. The development of biomarkers allowing an accurate assessment of disease progression is crucial for evaluating new therapies. Concretely, neuroimaging and transcriptomic (microRNA) data have been shown useful in tracking their progression. However, no single biomarker can accurately measure progression in these complex diseases. Additionally, large samples are not available for such rare disorders. It is thus essential to develop methods that can model disease progression by combining multiple biomarkers from small samples. In this paper, we propose a new framework for computing a disease progression score (DPS) from cross-sectional multimodal data. Specifically, we introduce a supervised multimodal variational autoencoder that can infer a meaningful latent space, where latent representations are placed along a disease trajectory. A score is computed by orthogonal projections onto this path. We evaluate our framework with multiple synthetic datasets and with a real dataset containing 14 patients, 40 presymptomatic genetic mutation carriers and 37 controls from the PREV-DEMALS study. There is no ground truth for the DPS in real-world scenarios, therefore we use the area under the ROC curve (AUC) as a proxy metric. Results with the synthetic datasets support this choice, since the higher the AUC, the more accurate the predicted simulated DPS. Experiments with the real dataset demonstrate better performance in comparison with state-of-the-art approaches. The proposed framework thus leverages cross-sectional multimodal datasets with small sample sizes to objectively measure disease progression, with potential application in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aiine发布了新的文献求助30
刚刚
唐小刚完成签到,获得积分10
刚刚
左耳东发布了新的文献求助30
1秒前
徐猫猫完成签到,获得积分20
3秒前
yyc发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
6秒前
7秒前
徐猫猫发布了新的文献求助10
8秒前
YOGA1115完成签到,获得积分10
8秒前
yangyajie发布了新的文献求助10
8秒前
9秒前
zjky6r发布了新的文献求助10
9秒前
大方海燕发布了新的文献求助10
9秒前
田様应助FUNG采纳,获得10
10秒前
斯文败类应助kevin1018采纳,获得10
10秒前
11秒前
re完成签到,获得积分10
12秒前
YOGA1115发布了新的文献求助10
12秒前
Bdcy完成签到 ,获得积分10
12秒前
13秒前
沐梓完成签到,获得积分10
13秒前
Ali990323完成签到,获得积分10
14秒前
yoo完成签到,获得积分10
14秒前
彭仲康完成签到 ,获得积分10
14秒前
14秒前
AAA发布了新的文献求助10
15秒前
16秒前
harmon发布了新的文献求助10
17秒前
思源应助大方海燕采纳,获得10
18秒前
19秒前
小巧尔蓝完成签到,获得积分10
20秒前
科研小白完成签到,获得积分10
20秒前
DI发布了新的文献求助10
20秒前
alabala完成签到,获得积分10
21秒前
22222发布了新的文献求助10
21秒前
SS1025861完成签到 ,获得积分10
24秒前
Lucas应助AAA采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339