Disease Progression Score Estimation From Multimodal Imaging and MicroRNA Data Using Supervised Variational Autoencoders

自编码 计算机科学 人工智能 机器学习 公制(单位) 失智症 疾病 痴呆 深度学习 医学 病理 运营管理 经济
作者
Virgilio Kmetzsch,E. Becker,Dario Saracino,Daisy Rinaldi,Agnès Camuzat,Isabelle Le Ber,Olivier Colliot
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6024-6035 被引量:8
标识
DOI:10.1109/jbhi.2022.3208517
摘要

Frontotemporal dementia and amyotrophic lateral sclerosis are rare neurodegenerative diseases with no effective treatment. The development of biomarkers allowing an accurate assessment of disease progression is crucial for evaluating new therapies. Concretely, neuroimaging and transcriptomic (microRNA) data have been shown useful in tracking their progression. However, no single biomarker can accurately measure progression in these complex diseases. Additionally, large samples are not available for such rare disorders. It is thus essential to develop methods that can model disease progression by combining multiple biomarkers from small samples. In this paper, we propose a new framework for computing a disease progression score (DPS) from cross-sectional multimodal data. Specifically, we introduce a supervised multimodal variational autoencoder that can infer a meaningful latent space, where latent representations are placed along a disease trajectory. A score is computed by orthogonal projections onto this path. We evaluate our framework with multiple synthetic datasets and with a real dataset containing 14 patients, 40 presymptomatic genetic mutation carriers and 37 controls from the PREV-DEMALS study. There is no ground truth for the DPS in real-world scenarios, therefore we use the area under the ROC curve (AUC) as a proxy metric. Results with the synthetic datasets support this choice, since the higher the AUC, the more accurate the predicted simulated DPS. Experiments with the real dataset demonstrate better performance in comparison with state-of-the-art approaches. The proposed framework thus leverages cross-sectional multimodal datasets with small sample sizes to objectively measure disease progression, with potential application in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
我是西瓜太郎完成签到,获得积分10
3秒前
深情千雁完成签到,获得积分10
3秒前
5秒前
beak完成签到,获得积分20
6秒前
年少完成签到,获得积分10
6秒前
iuhgnor完成签到,获得积分10
6秒前
7秒前
无辜不言完成签到,获得积分10
8秒前
9秒前
务实颜完成签到 ,获得积分10
9秒前
12秒前
laihama发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
16秒前
科科克尔克完成签到 ,获得积分10
16秒前
aprilvanilla完成签到,获得积分10
16秒前
十二应助sienna采纳,获得10
19秒前
爱吃橙子完成签到 ,获得积分10
21秒前
sunny完成签到,获得积分10
24秒前
25秒前
西柚柠檬完成签到 ,获得积分10
26秒前
现代宝宝完成签到,获得积分10
27秒前
小科完成签到,获得积分10
27秒前
墨羽完成签到,获得积分10
28秒前
沉默傲芙完成签到,获得积分10
28秒前
RYAN完成签到 ,获得积分10
31秒前
香蕉觅云应助科研通管家采纳,获得10
33秒前
xiaobao完成签到,获得积分10
33秒前
orixero应助科研通管家采纳,获得10
33秒前
coolkid应助科研通管家采纳,获得10
33秒前
coolkid应助科研通管家采纳,获得10
33秒前
852应助科研通管家采纳,获得10
33秒前
笨笨棒球应助科研通管家采纳,获得150
33秒前
coolkid应助科研通管家采纳,获得10
33秒前
coolkid应助科研通管家采纳,获得10
33秒前
烟花应助科研通管家采纳,获得10
33秒前
风清扬应助科研通管家采纳,获得10
33秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960187
求助须知:如何正确求助?哪些是违规求助? 3506348
关于积分的说明 11129110
捐赠科研通 3238489
什么是DOI,文献DOI怎么找? 1789751
邀请新用户注册赠送积分活动 871889
科研通“疑难数据库(出版商)”最低求助积分说明 803095