Disease Progression Score Estimation From Multimodal Imaging and MicroRNA Data Using Supervised Variational Autoencoders

自编码 计算机科学 人工智能 机器学习 公制(单位) 失智症 疾病 痴呆 深度学习 医学 病理 运营管理 经济
作者
Virgilio Kmetzsch,E. Becker,Dario Saracino,Daisy Rinaldi,Agnès Camuzat,Isabelle Le Ber,Olivier Colliot
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6024-6035 被引量:8
标识
DOI:10.1109/jbhi.2022.3208517
摘要

Frontotemporal dementia and amyotrophic lateral sclerosis are rare neurodegenerative diseases with no effective treatment. The development of biomarkers allowing an accurate assessment of disease progression is crucial for evaluating new therapies. Concretely, neuroimaging and transcriptomic (microRNA) data have been shown useful in tracking their progression. However, no single biomarker can accurately measure progression in these complex diseases. Additionally, large samples are not available for such rare disorders. It is thus essential to develop methods that can model disease progression by combining multiple biomarkers from small samples. In this paper, we propose a new framework for computing a disease progression score (DPS) from cross-sectional multimodal data. Specifically, we introduce a supervised multimodal variational autoencoder that can infer a meaningful latent space, where latent representations are placed along a disease trajectory. A score is computed by orthogonal projections onto this path. We evaluate our framework with multiple synthetic datasets and with a real dataset containing 14 patients, 40 presymptomatic genetic mutation carriers and 37 controls from the PREV-DEMALS study. There is no ground truth for the DPS in real-world scenarios, therefore we use the area under the ROC curve (AUC) as a proxy metric. Results with the synthetic datasets support this choice, since the higher the AUC, the more accurate the predicted simulated DPS. Experiments with the real dataset demonstrate better performance in comparison with state-of-the-art approaches. The proposed framework thus leverages cross-sectional multimodal datasets with small sample sizes to objectively measure disease progression, with potential application in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
波特卡斯D艾斯完成签到 ,获得积分10
刚刚
852应助排骨炖豆角采纳,获得10
1秒前
1秒前
顾矜应助木子采纳,获得10
1秒前
feng发布了新的文献求助10
1秒前
成就的小熊猫完成签到,获得积分10
2秒前
2秒前
Morgenstern_ZH完成签到,获得积分10
3秒前
hua发布了新的文献求助10
3秒前
_Forelsket_完成签到,获得积分10
3秒前
3秒前
半颗橙子完成签到 ,获得积分10
5秒前
科研通AI5应助zmy采纳,获得10
5秒前
善学以致用应助enoot采纳,获得10
6秒前
JamesPei应助失眠的血茗采纳,获得10
6秒前
青山发布了新的文献求助10
6秒前
亻鱼发布了新的文献求助10
7秒前
脑洞疼应助成就的小熊猫采纳,获得10
7秒前
7秒前
waterclouds完成签到 ,获得积分10
7秒前
圆圈儿完成签到,获得积分10
7秒前
司空剑封完成签到,获得积分10
8秒前
8秒前
海棠yiyi完成签到,获得积分10
8秒前
8秒前
梁小鑫发布了新的文献求助10
8秒前
Jenny应助圈圈采纳,获得10
9秒前
内向青文完成签到,获得积分10
9秒前
lefora完成签到,获得积分10
9秒前
丰知然应助CO2采纳,获得10
10秒前
Zhihu完成签到,获得积分10
10秒前
feng完成签到,获得积分10
11秒前
11秒前
美丽稀完成签到,获得积分10
12秒前
PXY应助屁王采纳,获得10
12秒前
sunburst完成签到,获得积分10
12秒前
狼主完成签到 ,获得积分10
12秒前
吕亦寒完成签到,获得积分10
12秒前
junzilan发布了新的文献求助10
13秒前
ZL发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740