种植
环境化学
化学
阳离子交换容量
农学
磷
土壤水分
土壤科学
环境科学
生态学
农业
生物
有机化学
作者
Dengxiu Wei,Chaoxian Wei,Pan Pan,Bigui Lin,Lin Wu,Beibei Liu,Zhenli He
标识
DOI:10.1016/j.jhazmat.2022.130017
摘要
The environmental behavior of Cd in soil has been widely studied because of its close relationship with food security and soil environmental pollution. In this study, the roles of P fractions and Fe oxides in the retention of Cd in typical tropical soil from five cropping patterns were investigated. Although there was no evident relationship between the Cd adsorption capacity and soil aggregate particle sizes, strong spatial associations of P, Fe, and Cd at the soil aggregates were observed via energy dispersive spectroscopy analysis. Among five cropping patterns, citrus plantations exhibited highest ratios (calculated by pixel area) of P overlapped with Cd (8.61%) and Fe overlapped with Cd (9.53%) in the microaggregates. Furthermore, the random forest model revealed that humic P and labile organic P greatly contributed to the sorptivity of Cd2+ by < 0.053 mm (13.3%) and 0.25-0.053 mm (13.4%) soil aggregates, respectively. Compared with the P fractions in different-sized soil aggregates, the contribution of Fe oxides to the sorption of Cd2+ by soil aggregates was more significant. Amorphous ferric oxide had the most significant contribution to the sorptivity of Cd2+ by < 0.053 mm (26.0%), 0.25-0.053 mm (23.0%), 2.0-0.25 mm (25.1%), and > 2.0 mm (33.9%) soil aggregates.
科研通智能强力驱动
Strongly Powered by AbleSci AI