[Rapid identification of geographic origins of Zingiberis Rhizoma by NIRS combined with chemometrics and machine learning algorithms].

化学计量学 主成分分析 线性判别分析 偏最小二乘回归 人工智能 支持向量机 模式识别(心理学) 随机森林 预处理器 数学 计算机科学 机器学习
作者
Dai-Xin Yu,Sheng Guo,Xia Zhang,Hui Yan,Zhenyu Zhang,Haiyang Li,Jian Yang,Jin‐Ao Duan
出处
期刊:PubMed 卷期号:47 (17): 4583-4592
标识
DOI:10.19540/j.cnki.cjcmm.20220514.103
摘要

In this study, 280 batches of Zingiberis Rhizoma samples from nine producing areas were analyzed to obtain infrared spectral information based on near-infrared spectroscopy(NIRS). Pluralistic chemometrics such as principal component analysis(PCA), partial least squares-discriminant analysis(PLS-DA), orthogonal partial least squares-discriminant analysis(OPLS-DA), K-nearest neighbors(KNN), support vector machine(SVM), random forest(RF), artificial neural network(ANN), and gradient boosting(GB) were applied for tracing of origins. The results showed that the discriminative accuracy of the spectral preprocessing by standard normal variate transformation coupled with the first derivative was 93.9%, which could be used for the construction of the discrimination model. PCA and PLS-DA score plots showed that samples from Shandong, Sichuan, Yunnan, and Guizhou could be effectively distinguished, but the remaining samples were partially overlapped. As revealed by the analysis results by machine learning algorithms, the AUC values of KNN, SVM, RF, ANN, and GB algorithms were 0.96, 0.99, 0.99, 0.99, and 0.98, respectively, with overall prediction accuracies of 83.3%, 89.3%, 90.5%, 91.7%, and 89.3%. It indicated that the developed model was reliable and the machine learning algorithm combined with NIRS for origin identification was sufficiently feasible. OPLS-DA showed that Zingiberis Rhizoma from Sichuan(genuine producing areas) could be significantly distinguished from other regions, with good discriminative accuracy, suggesting that the NIRS established in this study combined with chemometrics can be used for the identification of Zingiberis Rhizoma from Sichuan. This study established a rapid and nondestructive identification and reliable data analysis method for origin identification of Zingiberis Rhizoma, which is expected to provide a new idea for the origin tracing of Chinese medicinal materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科学家发布了新的文献求助10
刚刚
Elaine完成签到,获得积分10
1秒前
Susan完成签到,获得积分10
1秒前
yukk完成签到 ,获得积分10
1秒前
傻傻的飞丹完成签到 ,获得积分10
1秒前
niiiiii完成签到,获得积分20
2秒前
2秒前
小羊先生完成签到 ,获得积分10
3秒前
luluki发布了新的文献求助10
3秒前
大个应助mimi采纳,获得10
3秒前
赵先生完成签到,获得积分10
4秒前
5秒前
5秒前
meethaha完成签到,获得积分10
5秒前
大帅完成签到 ,获得积分10
6秒前
爆米花应助callmecjh采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
fqk完成签到,获得积分10
8秒前
ylj1531585955完成签到,获得积分20
8秒前
8秒前
BowieHuang应助睡觉采纳,获得10
9秒前
WXY完成签到,获得积分10
9秒前
Isabel完成签到 ,获得积分10
9秒前
murphy完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
乐乐应助niiiiii采纳,获得10
11秒前
11秒前
ylj1531585955发布了新的文献求助30
12秒前
12秒前
12秒前
13秒前
13秒前
15919229415发布了新的文献求助10
14秒前
LiChard完成签到 ,获得积分10
15秒前
董日甫完成签到 ,获得积分10
16秒前
可爱的函函应助luluki采纳,获得10
16秒前
头哥完成签到,获得积分10
17秒前
雨诺发布了新的文献求助10
17秒前
满意飞柏完成签到,获得积分10
17秒前
QQ完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773550
求助须知:如何正确求助?哪些是违规求助? 5612386
关于积分的说明 15431598
捐赠科研通 4906002
什么是DOI,文献DOI怎么找? 2640012
邀请新用户注册赠送积分活动 1587860
关于科研通互助平台的介绍 1542922