[Rapid identification of geographic origins of Zingiberis Rhizoma by NIRS combined with chemometrics and machine learning algorithms].

化学计量学 主成分分析 线性判别分析 偏最小二乘回归 人工智能 支持向量机 模式识别(心理学) 随机森林 预处理器 数学 计算机科学 机器学习
作者
Dai-Xin Yu,Sheng Guo,Xia Zhang,Hui Yan,Zhenyu Zhang,Haiyang Li,Jian Yang,Jin‐Ao Duan
出处
期刊:PubMed 卷期号:47 (17): 4583-4592
标识
DOI:10.19540/j.cnki.cjcmm.20220514.103
摘要

In this study, 280 batches of Zingiberis Rhizoma samples from nine producing areas were analyzed to obtain infrared spectral information based on near-infrared spectroscopy(NIRS). Pluralistic chemometrics such as principal component analysis(PCA), partial least squares-discriminant analysis(PLS-DA), orthogonal partial least squares-discriminant analysis(OPLS-DA), K-nearest neighbors(KNN), support vector machine(SVM), random forest(RF), artificial neural network(ANN), and gradient boosting(GB) were applied for tracing of origins. The results showed that the discriminative accuracy of the spectral preprocessing by standard normal variate transformation coupled with the first derivative was 93.9%, which could be used for the construction of the discrimination model. PCA and PLS-DA score plots showed that samples from Shandong, Sichuan, Yunnan, and Guizhou could be effectively distinguished, but the remaining samples were partially overlapped. As revealed by the analysis results by machine learning algorithms, the AUC values of KNN, SVM, RF, ANN, and GB algorithms were 0.96, 0.99, 0.99, 0.99, and 0.98, respectively, with overall prediction accuracies of 83.3%, 89.3%, 90.5%, 91.7%, and 89.3%. It indicated that the developed model was reliable and the machine learning algorithm combined with NIRS for origin identification was sufficiently feasible. OPLS-DA showed that Zingiberis Rhizoma from Sichuan(genuine producing areas) could be significantly distinguished from other regions, with good discriminative accuracy, suggesting that the NIRS established in this study combined with chemometrics can be used for the identification of Zingiberis Rhizoma from Sichuan. This study established a rapid and nondestructive identification and reliable data analysis method for origin identification of Zingiberis Rhizoma, which is expected to provide a new idea for the origin tracing of Chinese medicinal materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chenly完成签到,获得积分10
1秒前
小蘑菇应助毛球采纳,获得10
1秒前
1秒前
SciGPT应助123采纳,获得10
2秒前
2秒前
泓泽完成签到,获得积分20
2秒前
陈扇完成签到 ,获得积分10
3秒前
渔婆完成签到,获得积分10
4秒前
菜鸡一个发布了新的文献求助10
4秒前
一十九发布了新的文献求助10
4秒前
Ruuo616完成签到 ,获得积分10
5秒前
ddk完成签到,获得积分10
6秒前
6秒前
心想事成发布了新的文献求助10
6秒前
打打应助senli2018采纳,获得10
7秒前
7秒前
莫道桑榆完成签到,获得积分10
7秒前
7秒前
星空发布了新的文献求助10
7秒前
zhanghaha完成签到 ,获得积分10
8秒前
郭志康发布了新的文献求助10
8秒前
Ava应助高兴的海亦采纳,获得10
9秒前
NexusExplorer应助高兴的海亦采纳,获得10
9秒前
CodeCraft应助高兴的海亦采纳,获得10
9秒前
汉堡包应助高兴的海亦采纳,获得10
9秒前
Ava应助高兴的海亦采纳,获得10
9秒前
丘比特应助高兴的海亦采纳,获得10
9秒前
Owen应助高兴的海亦采纳,获得10
9秒前
研友_VZG7GZ应助高兴的海亦采纳,获得10
10秒前
大模型应助高兴的海亦采纳,获得10
10秒前
852应助高兴的海亦采纳,获得10
10秒前
会飞的螃蟹完成签到,获得积分10
10秒前
11秒前
11235应助泓泽采纳,获得10
11秒前
11秒前
小乖发布了新的文献求助10
11秒前
娇娇大王完成签到,获得积分10
12秒前
pandary发布了新的文献求助30
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424595
求助须知:如何正确求助?哪些是违规求助? 4538935
关于积分的说明 14164426
捐赠科研通 4455911
什么是DOI,文献DOI怎么找? 2443990
邀请新用户注册赠送积分活动 1435069
关于科研通互助平台的介绍 1412452