[Rapid identification of geographic origins of Zingiberis Rhizoma by NIRS combined with chemometrics and machine learning algorithms].

化学计量学 主成分分析 线性判别分析 偏最小二乘回归 人工智能 支持向量机 模式识别(心理学) 随机森林 预处理器 数学 计算机科学 机器学习
作者
Dai-Xin Yu,Sheng Guo,Xia Zhang,Hui Yan,Zhenyu Zhang,Haiyang Li,Jian Yang,Jin‐Ao Duan
出处
期刊:PubMed 卷期号:47 (17): 4583-4592
标识
DOI:10.19540/j.cnki.cjcmm.20220514.103
摘要

In this study, 280 batches of Zingiberis Rhizoma samples from nine producing areas were analyzed to obtain infrared spectral information based on near-infrared spectroscopy(NIRS). Pluralistic chemometrics such as principal component analysis(PCA), partial least squares-discriminant analysis(PLS-DA), orthogonal partial least squares-discriminant analysis(OPLS-DA), K-nearest neighbors(KNN), support vector machine(SVM), random forest(RF), artificial neural network(ANN), and gradient boosting(GB) were applied for tracing of origins. The results showed that the discriminative accuracy of the spectral preprocessing by standard normal variate transformation coupled with the first derivative was 93.9%, which could be used for the construction of the discrimination model. PCA and PLS-DA score plots showed that samples from Shandong, Sichuan, Yunnan, and Guizhou could be effectively distinguished, but the remaining samples were partially overlapped. As revealed by the analysis results by machine learning algorithms, the AUC values of KNN, SVM, RF, ANN, and GB algorithms were 0.96, 0.99, 0.99, 0.99, and 0.98, respectively, with overall prediction accuracies of 83.3%, 89.3%, 90.5%, 91.7%, and 89.3%. It indicated that the developed model was reliable and the machine learning algorithm combined with NIRS for origin identification was sufficiently feasible. OPLS-DA showed that Zingiberis Rhizoma from Sichuan(genuine producing areas) could be significantly distinguished from other regions, with good discriminative accuracy, suggesting that the NIRS established in this study combined with chemometrics can be used for the identification of Zingiberis Rhizoma from Sichuan. This study established a rapid and nondestructive identification and reliable data analysis method for origin identification of Zingiberis Rhizoma, which is expected to provide a new idea for the origin tracing of Chinese medicinal materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
仅此而已应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
solarlad应助科研通管家采纳,获得20
1秒前
fys131415应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得30
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
斐_应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
晚意完成签到,获得积分10
2秒前
赵雄伟完成签到,获得积分10
2秒前
明眸意海应助轩辕白竹采纳,获得50
2秒前
我是老大应助宇哈哈采纳,获得10
3秒前
hyh完成签到,获得积分10
3秒前
4秒前
大舟Austin完成签到 ,获得积分10
4秒前
鲤鱼灵槐完成签到,获得积分20
4秒前
4秒前
DJHKFD发布了新的文献求助10
6秒前
7秒前
上官若男应助一片叶子采纳,获得10
9秒前
gaochunjing发布了新的文献求助10
9秒前
卡尔发布了新的文献求助10
9秒前
缥缈青文发布了新的文献求助10
10秒前
不必要再讨论适合与否完成签到,获得积分0
10秒前
Inoron完成签到 ,获得积分10
11秒前
马路发布了新的文献求助10
11秒前
完美梨愁完成签到 ,获得积分10
12秒前
12秒前
sissiarno应助卜念采纳,获得30
12秒前
害羞的盼海完成签到,获得积分10
12秒前
Yishai_Song完成签到,获得积分10
13秒前
14秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165255
求助须知:如何正确求助?哪些是违规求助? 2816291
关于积分的说明 7912153
捐赠科研通 2475954
什么是DOI,文献DOI怎么找? 1318458
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388