已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Electro-osmosis modulated periodic membrane pumping flow and particle motion with magnetic field effects

微通道 物理 机械 流体学 泊松方程 流体力学 电场 经典力学 磁场 电气工程 量子力学 工程类
作者
D. S. Bhandari,Dharmendra Tripathi,O. Anwar Bég
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (9) 被引量:26
标识
DOI:10.1063/5.0111050
摘要

Theoretical studies of micro-electro-mechanical systems provide important insight into the mechanisms and optimization of such devices for a range of applications, including biomedical and chemical engineering. Inspired by emerging applications of microfluidics, unsteady viscous flow in a microchannel with periodic membrane pumping modulated by electro-magnetohydrodynamics is analyzed in a mathematical framework. The membrane kinematics induces the pressure inside the microchannel, where an electric field enhances the capability of the pumping flow rate. This model is formulated based on the Navier–Stokes equations, the Poisson equation, and the Maxwell electromagnetic equations and is further simplified using the lubrication approximations and Debye–Hückel linearization. The transformed dimensionless conservation equations under appropriate boundary conditions are analytically solved and the graphical results are illustrated through MATLAB (2019b) software. From the computational results, it is found that the Hartmann number enhances the fluid pressure uniformly throughout the microchannel, while the electric field parameter enforces the direction of the pressure-driven flow. The time-averaged flow rate exhibits a linear decay with axial pressure gradient, and it is strongly elevated with electric field parameter whereas it is weakly increased with electric double layer thickness parameter. It is further observed that the fluid is driven unidirectionally by the membrane contractions via a particle tracking simulation method. This study is relevant to provide the parametric estimation in designing the magnetic field-based microfluidics devices for microlevel transport phenomena.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好大树发布了新的文献求助30
2秒前
2秒前
称心的语梦完成签到,获得积分10
3秒前
良良丸完成签到 ,获得积分10
4秒前
充电宝应助swordlee采纳,获得10
5秒前
6秒前
wzh完成签到,获得积分10
8秒前
8秒前
8秒前
小白菜完成签到,获得积分10
9秒前
wzh发布了新的文献求助10
10秒前
haobhaobhaob发布了新的文献求助30
12秒前
meo应助七胖采纳,获得10
12秒前
中中发布了新的文献求助10
12秒前
正直的叫兽完成签到,获得积分10
14秒前
ivyyyyyy完成签到,获得积分20
14秒前
16秒前
顾矜应助wzh采纳,获得10
16秒前
16秒前
ivyyyyyy发布了新的文献求助10
18秒前
ys发布了新的文献求助10
18秒前
清脆松发布了新的文献求助10
21秒前
锂炸发布了新的文献求助10
22秒前
24秒前
27秒前
Wang发布了新的文献求助30
28秒前
菠萝完成签到,获得积分10
29秒前
haobhaobhaob完成签到,获得积分10
29秒前
Parsec完成签到 ,获得积分10
30秒前
wzy5508完成签到 ,获得积分10
30秒前
清脆松完成签到,获得积分10
31秒前
菠萝发布了新的文献求助10
32秒前
盐汽水完成签到 ,获得积分10
32秒前
温柔的曲奇完成签到 ,获得积分10
33秒前
Rainbow完成签到 ,获得积分10
36秒前
36秒前
37秒前
张西西完成签到 ,获得积分10
38秒前
奇趣糖发布了新的文献求助10
40秒前
43秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555581
求助须知:如何正确求助?哪些是违规求助? 3131303
关于积分的说明 9390512
捐赠科研通 2830894
什么是DOI,文献DOI怎么找? 1556204
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803