Plant-Mimetic Vertical-Channel Hydrogels for Synergistic Water Purification and Interfacial Water Evaporation

材料科学 蒸发 水道 化学工程 饮用水净化 自愈水凝胶 频道(广播) 纳米技术 环境工程 环境科学 海洋学 热力学 电气工程 物理 地质学 工程类 高分子化学 入口
作者
Ran Niu,Yang Ding,Liang Hao,Jiaxin Ren,Jiang Gong,Jinping Qu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (40): 45533-45544 被引量:75
标识
DOI:10.1021/acsami.2c14773
摘要

The integration of renewable solar energy-driven interfacial evaporation and photocatalysis has recently emerged as one of the most promising technologies for simultaneous freshwater production and pollutant removal. However, the construction of an advanced integrated system with the merit of a fast supply of water and pollutant molecules remains challenging for efficient solar-driven evaporation and photocatalytic performance. Herein, inspired by the transpiration of plants, we fabricate a biomimetic, vertically channeled polypyrrole/foam-like carbon nitride/poly(vinyl alcohol) hydrogel (PCH) by directional freeze-drying. We prove that the vertically aligned channels not only reduce heat loss and improve energy conversion efficiency but also facilitate the transport of water and organic pollutants to the air–water interface. Benefiting from the advantages above, the PCH evaporator presents a high solar evaporation efficiency of 92.5%, with the evaporation rate achieving 2.27 kg m–2 h–1 under 1 kW m–2 irradiation, exceeding many advanced interfacial solar-driven evaporators. Meanwhile, PCH reaches a degradation efficiency of 90.6% within 1 h when dealing with tetracycline (a typical antibiotic)-polluted water, remarkably higher than that of the hydrogel without vertically aligned channels (68.6%). Furthermore, the as-formed reactive oxygen species effectively kill Gram-positive and Gram-negative bacterial in the source water, achieving the all-round water purification. In an outdoor experiment, after 11 h of sunlight irradiation, the tetracycline degradation efficiency and freshwater production of the PCH evaporator rise to 99.0% and 6.2 kg m–2, respectively. This work highlights the novel biomimetic approach to fabricate multifunctional photothermal materials for simultaneous freshwater production and polluted-water remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cmmmxr应助刘杨采纳,获得10
刚刚
想吃栗子完成签到,获得积分10
1秒前
text完成签到,获得积分10
1秒前
伊萨卡发布了新的文献求助10
2秒前
小康学弟完成签到 ,获得积分10
2秒前
2秒前
xhy发布了新的文献求助10
2秒前
威武道罡完成签到,获得积分10
2秒前
茶茶发布了新的文献求助10
2秒前
明明完成签到,获得积分10
3秒前
在水一方应助梁三柏采纳,获得10
3秒前
支珩驳回了Lucas应助
3秒前
3秒前
xxx完成签到,获得积分10
4秒前
想吃栗子发布了新的文献求助10
4秒前
英姑应助刘璇1采纳,获得10
4秒前
罗大海发布了新的文献求助10
4秒前
4秒前
nenoaowu发布了新的文献求助10
5秒前
5秒前
辛辛发布了新的文献求助10
6秒前
温暖寻绿完成签到,获得积分10
6秒前
刘蓬天发布了新的文献求助10
7秒前
FLOATER发布了新的文献求助10
7秒前
7秒前
8秒前
许情发布了新的文献求助10
8秒前
西柚芝士茉莉完成签到,获得积分10
9秒前
科研通AI5应助梅倪采纳,获得10
9秒前
JamesPei应助天天采纳,获得10
9秒前
10秒前
维妮妮发布了新的文献求助10
10秒前
无花果应助冯大哥采纳,获得10
10秒前
11秒前
七濑完成签到,获得积分10
11秒前
eternity136应助tt采纳,获得20
12秒前
13秒前
xwl9955发布了新的文献求助10
13秒前
14秒前
jdknvoadn发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558083
求助须知:如何正确求助?哪些是违规求助? 3133203
关于积分的说明 9401074
捐赠科研通 2833299
什么是DOI,文献DOI怎么找? 1557421
邀请新用户注册赠送积分活动 727253
科研通“疑难数据库(出版商)”最低求助积分说明 716257