A Universal Machine Learning Framework for Electrocatalyst Innovation: A Case Study of Discovering Alloys for Hydrogen Evolution Reaction

电催化剂 材料科学 卷积神经网络 计算机科学 简单(哲学) 人工神经网络 从头算 深度学习 人工智能 电化学 电极 物理化学 认识论 哲学 有机化学 化学
作者
Letian Chen,Yun Tian,Xu Hu,Sai Yao,Zhengyu Lu,Suya Chen,Xu Zhang,Zhen Zhou
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (47) 被引量:46
标识
DOI:10.1002/adfm.202208418
摘要

Abstract Massive efforts have been made to develop efficient electrocatalysts for green hydrogen production. The introduction of machine learning (ML) has brought new opportunities to the design of electrocatalysts. However, current ML studies have shown that the efficiency and accuracy of this method in electrocatalyst development are severely hindered by two major problems, high computational cost paid for electronic or geometrical structures with high accuracy, and large errors resulted from those easily accessible and relatively simple physical and chemical properties with lower level of accuracy. Here, a universal ML framework is proposed that achieves local structure optimization by using local machine learning potential (MLP) to efficiently obtain accurate structure descriptors, and by combining simple physical properties with graph convolutional neural networks, 43 high‐performance alloys are successfully screened as potential hydrogen evolution reaction electrocatalysts from 2973 candidates. More importantly, part of the best candidates identified from this framework have been verified in experiments, and one of them (AgPd) is systematically investigated by ab initio calculations under realistic electrocatalytic environments to further demonstrate the accuracy. More significantly, the computational efficiency and accuracy can be compromised with this local MLP optimized structural descriptor as the input, and a new paradigm could be established in designing high‐performance electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ln完成签到 ,获得积分10
4秒前
科研通AI2S应助开放大山采纳,获得10
6秒前
研友_VZG7GZ应助四角水采纳,获得10
6秒前
刘莅完成签到 ,获得积分10
8秒前
Owen应助shain采纳,获得10
8秒前
steve完成签到 ,获得积分10
9秒前
BIT-ZJX完成签到,获得积分10
11秒前
静悄悄地麻倒你完成签到 ,获得积分10
12秒前
懵懂的灭男关注了科研通微信公众号
16秒前
可爱的函函应助wxx采纳,获得10
16秒前
所所应助奥一奥采纳,获得10
17秒前
17秒前
18秒前
20秒前
非人非木发布了新的文献求助200
23秒前
不安的嘉懿完成签到 ,获得积分10
23秒前
23秒前
26秒前
27秒前
杳鸢应助科研通管家采纳,获得10
27秒前
科目三应助科研通管家采纳,获得30
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
香蕉觅云应助科研通管家采纳,获得10
27秒前
27秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
argon完成签到,获得积分10
28秒前
萨特完成签到,获得积分10
28秒前
四角水发布了新的文献求助10
31秒前
阔达的太阳完成签到,获得积分10
34秒前
务实的又柔完成签到,获得积分10
34秒前
Bressanone发布了新的文献求助10
35秒前
36秒前
nickel完成签到,获得积分10
39秒前
44秒前
丁仪完成签到,获得积分10
44秒前
搜集达人应助--采纳,获得10
45秒前
46秒前
NZH发布了新的文献求助20
47秒前
48秒前
wxx完成签到,获得积分10
49秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161014
求助须知:如何正确求助?哪些是违规求助? 2812392
关于积分的说明 7895364
捐赠科研通 2471232
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094