Abstract Massive efforts have been made to develop efficient electrocatalysts for green hydrogen production. The introduction of machine learning (ML) has brought new opportunities to the design of electrocatalysts. However, current ML studies have shown that the efficiency and accuracy of this method in electrocatalyst development are severely hindered by two major problems, high computational cost paid for electronic or geometrical structures with high accuracy, and large errors resulted from those easily accessible and relatively simple physical and chemical properties with lower level of accuracy. Here, a universal ML framework is proposed that achieves local structure optimization by using local machine learning potential (MLP) to efficiently obtain accurate structure descriptors, and by combining simple physical properties with graph convolutional neural networks, 43 high‐performance alloys are successfully screened as potential hydrogen evolution reaction electrocatalysts from 2973 candidates. More importantly, part of the best candidates identified from this framework have been verified in experiments, and one of them (AgPd) is systematically investigated by ab initio calculations under realistic electrocatalytic environments to further demonstrate the accuracy. More significantly, the computational efficiency and accuracy can be compromised with this local MLP optimized structural descriptor as the input, and a new paradigm could be established in designing high‐performance electrocatalysts.