A Universal Machine Learning Framework for Electrocatalyst Innovation: A Case Study of Discovering Alloys for Hydrogen Evolution Reaction

电催化剂 材料科学 卷积神经网络 计算机科学 简单(哲学) 人工神经网络 从头算 深度学习 人工智能 电化学 电极 物理化学 认识论 哲学 有机化学 化学
作者
Letian Chen,Yun Tian,Xu Hu,Sai Yao,Zhengyu Lu,Suya Chen,Xu Zhang,Zhen Zhou
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (47) 被引量:59
标识
DOI:10.1002/adfm.202208418
摘要

Abstract Massive efforts have been made to develop efficient electrocatalysts for green hydrogen production. The introduction of machine learning (ML) has brought new opportunities to the design of electrocatalysts. However, current ML studies have shown that the efficiency and accuracy of this method in electrocatalyst development are severely hindered by two major problems, high computational cost paid for electronic or geometrical structures with high accuracy, and large errors resulted from those easily accessible and relatively simple physical and chemical properties with lower level of accuracy. Here, a universal ML framework is proposed that achieves local structure optimization by using local machine learning potential (MLP) to efficiently obtain accurate structure descriptors, and by combining simple physical properties with graph convolutional neural networks, 43 high‐performance alloys are successfully screened as potential hydrogen evolution reaction electrocatalysts from 2973 candidates. More importantly, part of the best candidates identified from this framework have been verified in experiments, and one of them (AgPd) is systematically investigated by ab initio calculations under realistic electrocatalytic environments to further demonstrate the accuracy. More significantly, the computational efficiency and accuracy can be compromised with this local MLP optimized structural descriptor as the input, and a new paradigm could be established in designing high‐performance electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
曲艺发布了新的文献求助10
4秒前
ceeray23应助科研通管家采纳,获得10
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
6秒前
安安发布了新的文献求助10
6秒前
7秒前
ee发布了新的文献求助10
9秒前
10秒前
12秒前
13秒前
Ava应助微笑的寒珊采纳,获得10
14秒前
笠桉完成签到 ,获得积分20
15秒前
min发布了新的文献求助10
15秒前
17秒前
17秒前
Knight-1124发布了新的文献求助10
18秒前
安安完成签到,获得积分20
18秒前
21秒前
wangling2333应助BBC采纳,获得10
21秒前
ee完成签到,获得积分20
21秒前
JamesPei应助Marco_hxkq采纳,获得10
22秒前
bkagyin应助lasu采纳,获得10
23秒前
chen完成签到,获得积分10
24秒前
min完成签到,获得积分10
25秒前
26秒前
Jasper应助liuguohua126采纳,获得10
26秒前
杨旭发布了新的文献求助10
29秒前
30秒前
坚定手链应助干净白容采纳,获得10
30秒前
32秒前
量子星尘发布了新的文献求助10
32秒前
至此完成签到,获得积分10
32秒前
32秒前
搜集达人应助霸气保温杯采纳,获得10
33秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089