Semi-supervised medical image classification with adaptive threshold pseudo-labeling and unreliable sample contrastive loss

杠杆(统计) 样品(材料) 计算机科学 人工智能 半监督学习 模式识别(心理学) 机器学习 标记数据 监督学习 班级(哲学) 人工神经网络 色谱法 化学
作者
Zhen Peng,Shengwei Tian,Long Yu,Dezhi Zhang,Weidong Wu,Shaofeng Zhou
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104142-104142 被引量:10
标识
DOI:10.1016/j.bspc.2022.104142
摘要

Semi-supervised learning (SSL) may employ unlabeled data to improve model performance, which has great significance in medical imaging tasks. However, pseudo-labeling-based semi-supervised approaches suffer from two problems in medical image datasets: (1) the models' predictions are biased toward the majority class in imbalanced datasets, and (2) discarding unlabeled data with confidence below the thresholds results in the loss of useful information. To solve these issues, we propose a novel SSL framework, FullMatch, which improves the model's performance by utilizing all unlabeled data. Specifically, we propose adaptive threshold pseudo-labeling (ATPL), a method for generating pseudo-labels based on the model's current learning status. ATPL dynamically adjusts the thresholds for each class during the training process, which can generate more pseudo-labels for classes with learning difficulties, thus alleviating the problem of data imbalance. Unlike existing semi-supervised methods based on pseudo-labeling, we do not discard unlabeled data with confidence below the thresholds. We propose an unreliable sample contrastive loss (USCL) to leverage useful information from unlabeled data with confidence below the thresholds by learning the similarities and differences between sample features. To evaluate the performance of the proposed method, we conducted experiments on the ISIC 2018 skin lesion classification dataset and the blood cell classification dataset. The experimental results show that our method outperforms the state-of-the-art SSL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
000发布了新的文献求助10
刚刚
大个应助啦啦啦采纳,获得30
1秒前
1秒前
Revie发布了新的文献求助10
1秒前
2秒前
混子完成签到,获得积分10
2秒前
李可爱发布了新的文献求助10
4秒前
5秒前
wy完成签到,获得积分10
6秒前
7秒前
香蕉觅云应助雪雪儿采纳,获得10
8秒前
彭于晏应助悲凉的妙松采纳,获得10
10秒前
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
Alexander完成签到,获得积分20
13秒前
蒲云海发布了新的文献求助10
15秒前
李健应助哦啦啦采纳,获得10
15秒前
田様应助哦啦啦采纳,获得10
15秒前
SciGPT应助Allonz采纳,获得10
15秒前
啦啦啦发布了新的文献求助30
17秒前
小篮子发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
18秒前
19秒前
19秒前
19秒前
20秒前
20秒前
金鑫水淼发布了新的文献求助10
21秒前
21秒前
怕孤单的寒天完成签到,获得积分10
22秒前
22秒前
zhaohuanyu完成签到,获得积分20
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309