Benchmarking Machine Learning Algorithms for Diagnosis of Renal Cell Carcinoma

人工智能 阿达布思 线性判别分析 医学 肾细胞癌 支持向量机 机器学习 接收机工作特性 分类器(UML) 逻辑回归 算法 计算机科学 Boosting(机器学习) 模式识别(心理学) 病理
作者
Tao Dai,Shuai Zhu,Fuchang Han,Mingji Ye,Xiang Wang,Weili Tan,Xiaming Pei,Shenghui Liao,Yu Xie
出处
期刊:Iranian Journal of Radiology [Kowsar Medical Institute]
卷期号:19 (3) 被引量:2
标识
DOI:10.5812/iranjradiol-119266
摘要

Background: Accurate differentiation of angiomyolipoma (AML) from renal cell carcinoma (RCC) is important in RCC diagnosis. Objectives: This study aimed to evaluate the performance of different supervised machine learning (ML) algorithms for RCC based on computed tomography (CT) examinations. Patients and Methods: The CT images of known cases of RCC or renal AML were collected and divided into training and testing groups. The texture features of CT images were drawn and quantified in MaZda software; a total of 352 features were drawn from each image. Top 10 features with statistical significance for differentiation of RCC from benign tumors in the training group were selected to establish diagnosis models based on 16 supervised ML algorithms. Next, the models were compared regarding accuracy and specificity. The trained models were further examined by comparison with data from the testing group. Results: Among 16 classifiers trained in this study, the logistic regression, linear discriminant analysis, k-nearest neighbor algorithm, support vector machines (SVMs), ridge classifier, AdaBoost classifier, gradient boosting classifier, and CatBoost classifier showed good performance in discriminating RCC from AML (accuracy, ≥ 0.7; area under the [receiver operating characteristic [ROC]] curve [AUC] ≥ 0.75) in both training and testing datasets. Conclusion: Based on the ML algorithms for big data, diagnostic classifiers can be valuable tools for an accurate diagnosis of RCC. By comparing different algorithms, the present results indicated potential algorithms for the development of RCC diagnostic classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助王一二采纳,获得10
1秒前
Ava应助王一二采纳,获得10
1秒前
King完成签到,获得积分10
1秒前
uu发布了新的文献求助10
2秒前
Jasper应助147采纳,获得10
3秒前
ding应助甜甜语薇采纳,获得10
3秒前
Tohka完成签到 ,获得积分10
4秒前
热情的世平完成签到,获得积分10
4秒前
上官若男应助称心奇迹采纳,获得10
5秒前
6秒前
健忘捕完成签到 ,获得积分10
7秒前
8秒前
10秒前
zeng完成签到,获得积分10
10秒前
10秒前
钵钵鸡发布了新的文献求助10
10秒前
研友_ZG4ml8完成签到 ,获得积分10
10秒前
燕鹏完成签到,获得积分10
12秒前
12秒前
123发布了新的文献求助10
13秒前
bcxly发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
爆米花应助香山叶正红采纳,获得10
15秒前
147发布了新的文献求助10
15秒前
honglingjing完成签到,获得积分10
16秒前
16秒前
uu完成签到,获得积分10
16秒前
研友_8yN60L发布了新的文献求助10
18秒前
燕鹏发布了新的文献求助10
18秒前
风音发布了新的文献求助10
19秒前
咩咩羊发布了新的文献求助10
19秒前
20秒前
传奇3应助Heavenfalling采纳,获得10
24秒前
小柒完成签到 ,获得积分10
24秒前
荔枝树13发布了新的文献求助10
24秒前
木木应助yongzaizhuigan采纳,获得10
25秒前
27秒前
阿俊完成签到 ,获得积分10
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233011
求助须知:如何正确求助?哪些是违规求助? 2879662
关于积分的说明 8212270
捐赠科研通 2547168
什么是DOI,文献DOI怎么找? 1376574
科研通“疑难数据库(出版商)”最低求助积分说明 647659
邀请新用户注册赠送积分活动 623067