Machine learning for high-entropy alloys: Progress, challenges and opportunities

高熵合金 工作流程 计算机科学 材料科学 不确定度量化 原子单位 纳米技术 统计物理学 人工智能 机器学习 微观结构 物理 数据库 量子力学 冶金 程序设计语言
作者
Xianglin Liu,Jiaxin Zhang,Zongrui Pei
出处
期刊:Progress in Materials Science [Elsevier]
卷期号:131: 101018-101018 被引量:113
标识
DOI:10.1016/j.pmatsci.2022.101018
摘要

High-entropy alloys (HEAs) have attracted extensive interest due to their exceptional mechanical properties and the vast compositional space for new HEAs. However, understanding their novel physical mechanisms and then using these mechanisms to design new HEAs are confronted with their high-dimensional chemical complexity, which presents unique challenges to (i) the theoretical modeling that needs accurate atomic interactions for atomistic simulations and (ii) constructing reliable macro-scale models for high-throughput screening of vast amounts of candidate alloys. Machine learning (ML) sheds light on these problems with its capability to represent extremely complex relations. This review highlights the success and promising future of utilizing ML to overcome these challenges. We first introduce the basics of ML algorithms and application scenarios. We then summarize the state-of-the-art ML models describing atomic interactions and atomistic simulations of thermodynamic and mechanical properties. Special attention is paid to phase predictions, planar-defect calculations, and plastic deformation simulations. Next, we review ML models for macro-scale properties, such as lattice structures, phase formations, and mechanical properties. Examples of machine-learned phase-formation rules and order parameters are used to illustrate the workflow. Finally, we discuss the remaining challenges and present an outlook of research directions, including uncertainty quantification and ML-guided inverse materials design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余姓懒完成签到,获得积分10
1秒前
1秒前
搜集达人应助小喵采纳,获得10
2秒前
忧心的网络完成签到,获得积分10
3秒前
一二三木偶人完成签到,获得积分10
3秒前
科研通AI2S应助qq.com采纳,获得10
3秒前
虚拟的眼神完成签到,获得积分10
6秒前
FashionBoy应助aliupeifang采纳,获得30
11秒前
搞怪书兰完成签到,获得积分10
13秒前
黎明完成签到,获得积分10
14秒前
11111完成签到,获得积分10
14秒前
小格调完成签到 ,获得积分10
15秒前
开心的小媚完成签到 ,获得积分10
18秒前
19秒前
小格调关注了科研通微信公众号
20秒前
20秒前
蛋炒饭不加蛋完成签到,获得积分10
20秒前
英姑应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
罗_应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
wwz应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
shinysparrow应助科研通管家采纳,获得200
21秒前
罗_应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
罗_应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
Raylihuang应助闵问柳采纳,获得20
25秒前
张三发布了新的文献求助10
26秒前
冯小逢完成签到,获得积分10
28秒前
闵问柳完成签到,获得积分10
30秒前
31秒前
冯小逢发布了新的文献求助20
33秒前
YELLOW完成签到,获得积分10
34秒前
35秒前
林夕完成签到,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137511
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7786944
捐赠科研通 2444783
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625770
版权声明 601023