Machine learning for high-entropy alloys: Progress, challenges and opportunities

高熵合金 工作流程 计算机科学 材料科学 不确定度量化 原子单位 纳米技术 统计物理学 人工智能 机器学习 微观结构 物理 数据库 量子力学 冶金 程序设计语言
作者
Xianglin Liu,Jiaxin Zhang,Zongrui Pei
出处
期刊:Progress in Materials Science [Elsevier BV]
卷期号:131: 101018-101018 被引量:203
标识
DOI:10.1016/j.pmatsci.2022.101018
摘要

High-entropy alloys (HEAs) have attracted extensive interest due to their exceptional mechanical properties and the vast compositional space for new HEAs. However, understanding their novel physical mechanisms and then using these mechanisms to design new HEAs are confronted with their high-dimensional chemical complexity, which presents unique challenges to (i) the theoretical modeling that needs accurate atomic interactions for atomistic simulations and (ii) constructing reliable macro-scale models for high-throughput screening of vast amounts of candidate alloys. Machine learning (ML) sheds light on these problems with its capability to represent extremely complex relations. This review highlights the success and promising future of utilizing ML to overcome these challenges. We first introduce the basics of ML algorithms and application scenarios. We then summarize the state-of-the-art ML models describing atomic interactions and atomistic simulations of thermodynamic and mechanical properties. Special attention is paid to phase predictions, planar-defect calculations, and plastic deformation simulations. Next, we review ML models for macro-scale properties, such as lattice structures, phase formations, and mechanical properties. Examples of machine-learned phase-formation rules and order parameters are used to illustrate the workflow. Finally, we discuss the remaining challenges and present an outlook of research directions, including uncertainty quantification and ML-guided inverse materials design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
答辩发布了新的文献求助10
2秒前
2秒前
2秒前
大模型应助阁主采纳,获得10
2秒前
3秒前
4秒前
4秒前
popcorn完成签到,获得积分10
4秒前
4秒前
4秒前
twotwomi完成签到,获得积分10
4秒前
ly完成签到,获得积分20
5秒前
ChenYifei完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
Lucas应助来日方长采纳,获得10
6秒前
chang发布了新的文献求助10
6秒前
小巫发布了新的文献求助10
7秒前
周娅敏发布了新的文献求助10
8秒前
华仔应助答辩采纳,获得10
8秒前
caixiayin发布了新的文献求助10
8秒前
8秒前
威武的冷风关注了科研通微信公众号
9秒前
9秒前
9秒前
9秒前
10秒前
科研通AI2S应助奋斗若风采纳,获得10
10秒前
ly发布了新的文献求助10
10秒前
11秒前
xiang完成签到,获得积分10
11秒前
李爱国应助迷恋采纳,获得10
11秒前
在摆烂的dog完成签到,获得积分10
12秒前
星辰大海应助刘源采纳,获得10
12秒前
小巫完成签到,获得积分10
13秒前
ironsilica完成签到,获得积分10
13秒前
土豪的土豆完成签到 ,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650