Scalable and sustainable electrochemical allylic C–H oxidation

烯丙基重排 化学选择性 组合化学 背景(考古学) 简单 电化学 范围(计算机科学) 化学 基质(水族馆) 天然产物 计算机科学 催化作用 有机化学 生化工程 纳米技术 材料科学 工程类 哲学 物理化学 古生物学 地质学 程序设计语言 认识论 海洋学 生物 电极
作者
Evan J. Horn,Brandon R. Rosen,Yong Chen,Jiaze Tang,Ke Chen,Martin D. Eastgate,Phil S. Baran
出处
期刊:Nature [Springer Nature]
卷期号:533 (7601): 77-81 被引量:657
标识
DOI:10.1038/nature17431
摘要

An electrochemical C–H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity is described; it uses inexpensive and readily available materials and represents a scalable allylic C–H oxidation that could be adopted in large-scale industrial settings without substantial environmental impact. Allylic C–H oxidation has been used widely in the syntheses of natural product variants, medicines and new materials. One disadvantage of the reaction is that it requires highly toxic reagents or expensive catalysts. In this manuscript, the authors describe an electrochemical alternative to conventional allylic oxidation. The new method utilizes inexpensive and readily available materials, has broad substrate scope, operational simplicity, and high chemoselectivity, all with minimal environmental impact. New methods and strategies for the direct functionalization of C–H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials1. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C–H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials2. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”3. Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium)2. These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C–H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C–H oxidation (demonstrated on 100 grams), enabling the adoption of this C–H oxidation strategy in large-scale industrial settings without substantial environmental impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangruize完成签到,获得积分10
3秒前
小布完成签到 ,获得积分10
7秒前
西瓜霜完成签到 ,获得积分10
8秒前
研友_892kOL完成签到,获得积分10
28秒前
jerry完成签到 ,获得积分10
31秒前
吕佩昌完成签到 ,获得积分10
42秒前
123完成签到 ,获得积分10
49秒前
风中珩发布了新的文献求助10
53秒前
我爱康康文献完成签到 ,获得积分10
53秒前
岳小龙完成签到 ,获得积分10
1分钟前
lj完成签到 ,获得积分10
1分钟前
was_3完成签到,获得积分10
1分钟前
LiangRen完成签到 ,获得积分10
1分钟前
要笑cc完成签到,获得积分10
1分钟前
1分钟前
宣宣宣0733完成签到,获得积分10
1分钟前
胡质斌完成签到,获得积分10
1分钟前
CH科研发布了新的文献求助10
1分钟前
儒雅沛凝完成签到 ,获得积分10
1分钟前
1分钟前
高高的从波完成签到,获得积分10
1分钟前
lingling完成签到 ,获得积分10
1分钟前
kenchilie完成签到 ,获得积分10
2分钟前
qiancib202完成签到,获得积分10
2分钟前
脑洞疼应助CH科研采纳,获得10
2分钟前
CH科研完成签到,获得积分10
2分钟前
2分钟前
牛奶拌可乐完成签到 ,获得积分10
2分钟前
2024kyt完成签到 ,获得积分10
2分钟前
高速旋转老沁完成签到 ,获得积分10
2分钟前
顺利的科研能手完成签到 ,获得积分10
2分钟前
2分钟前
冷静的访天完成签到 ,获得积分10
2分钟前
未完成完成签到,获得积分10
2分钟前
3分钟前
程笑笑完成签到 ,获得积分20
3分钟前
小宝完成签到,获得积分10
3分钟前
一颗红葡萄完成签到 ,获得积分10
3分钟前
XXJJQ发布了新的文献求助10
3分钟前
孟寐以求完成签到 ,获得积分10
3分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463646
求助须知:如何正确求助?哪些是违规求助? 3057044
关于积分的说明 9055263
捐赠科研通 2746966
什么是DOI,文献DOI怎么找? 1507198
科研通“疑难数据库(出版商)”最低求助积分说明 696451
邀请新用户注册赠送积分活动 695956