Prediction of soil depth using a soil-landscape regression model: a case study on forest soils in southern Taiwan.

数字土壤制图 仰角(弹道) 土壤水分 土壤图 环境科学 土壤科学 土壤测量 数字高程模型 多元统计 水文学(农业) 回归分析 土壤系列 线性回归 土层 地质学 自然地理学 土壤分类 地理 数学 统计 岩土工程 遥感 几何学
作者
Chen‐Chi Tsai,Zueng‐Sang Chen,Chin-Tzer Duh,Fu-Wen Horng
出处
期刊:PubMed 卷期号:25 (1): 34-9 被引量:40
链接
标识
摘要

Techniques for conventional forest soil surveys in Taiwan need to be further developed in order to save time and money. Although some soil-landscape regression models have been developed to describe and predict soil properties and depths, they have seldom been studied in Taiwan. This study establishes linear soil-landscape regression models related to soil depths and landscape factors found in the forest soils of southern Taiwan. These models were evaluated by validating the models according to their mean errors and root mean square errors. The study was carried out at the 60,000 ha Chishan Forest Working Circle. About 310 soil pedons were collected. The landscape factors included elevation, slope, aspect, and surface stone contents. Sixty percent of the total field samples were used to establish the soil-landscape regression models, and forty % were used for validation. The sampling strategy indicated that each representative pedon covers an area of about 147 ha. The number of samples was appropriate considering the available time and budget. The single variate and/or multivariate linear regression soil-landscape models were successfully established. Those models revealed significant inter-relations among the soil depths of the B and B+BC horizons, solum thickness, and landscape factors, including slope and surface stone contents (p < 0.003). The mean errors in the validation of the soil-landscape model were low and acceptable for this case study. In addition, the slope data derived from the DEM (digital elevation model) database in this case study were used to predict the soil depths of the B, B+BC horizons and the solum thickness without carrying out a field survey. Surface stone should be collected in a field soil survey to increase the precision of soil depth prediction of the B and B+BC horizons, and the solum thickness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
称心的不言应助务实篮球采纳,获得10
1秒前
xionggege完成签到,获得积分10
1秒前
高高发布了新的文献求助10
1秒前
赵钱孙李完成签到,获得积分10
2秒前
陆陆完成签到,获得积分10
2秒前
缥缈的绝山完成签到,获得积分10
3秒前
3秒前
3秒前
情怀应助清风明月采纳,获得10
4秒前
lzm完成签到,获得积分10
4秒前
4秒前
大萝贝完成签到,获得积分10
5秒前
yibaozhangfa完成签到,获得积分10
5秒前
木南完成签到 ,获得积分10
5秒前
yyy关注了科研通微信公众号
5秒前
陆离发布了新的文献求助10
5秒前
5秒前
Reginannnn完成签到,获得积分10
5秒前
机智的觅风完成签到,获得积分10
6秒前
luqian完成签到,获得积分10
6秒前
6秒前
COCO完成签到 ,获得积分10
6秒前
rorocris完成签到,获得积分10
6秒前
hodge完成签到,获得积分10
6秒前
俞孤风完成签到,获得积分10
7秒前
复杂嚓茶发布了新的文献求助10
7秒前
Mint发布了新的文献求助10
7秒前
缓冲中完成签到 ,获得积分10
7秒前
啦啦啦啦啦完成签到 ,获得积分10
8秒前
3123939715完成签到,获得积分10
8秒前
nininidoc完成签到,获得积分10
8秒前
天真的冬寒完成签到,获得积分20
8秒前
失眠万仇发布了新的文献求助10
8秒前
luqian发布了新的文献求助10
9秒前
10秒前
11111完成签到,获得积分10
10秒前
11秒前
Starry完成签到 ,获得积分10
11秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388033
求助须知:如何正确求助?哪些是违规求助? 4509993
关于积分的说明 14033613
捐赠科研通 4420842
什么是DOI,文献DOI怎么找? 2428496
邀请新用户注册赠送积分活动 1421139
关于科研通互助平台的介绍 1400326