Prediction of soil depth using a soil-landscape regression model: a case study on forest soils in southern Taiwan.

数字土壤制图 仰角(弹道) 土壤水分 土壤图 环境科学 土壤科学 土壤测量 数字高程模型 多元统计 水文学(农业) 回归分析 土壤系列 线性回归 土层 地质学 自然地理学 土壤分类 地理 数学 统计 岩土工程 遥感 几何学
作者
Chen‐Chi Tsai,Zueng‐Sang Chen,Chin-Tzer Duh,Fu-Wen Horng
出处
期刊:PubMed 卷期号:25 (1): 34-9 被引量:40
链接
标识
摘要

Techniques for conventional forest soil surveys in Taiwan need to be further developed in order to save time and money. Although some soil-landscape regression models have been developed to describe and predict soil properties and depths, they have seldom been studied in Taiwan. This study establishes linear soil-landscape regression models related to soil depths and landscape factors found in the forest soils of southern Taiwan. These models were evaluated by validating the models according to their mean errors and root mean square errors. The study was carried out at the 60,000 ha Chishan Forest Working Circle. About 310 soil pedons were collected. The landscape factors included elevation, slope, aspect, and surface stone contents. Sixty percent of the total field samples were used to establish the soil-landscape regression models, and forty % were used for validation. The sampling strategy indicated that each representative pedon covers an area of about 147 ha. The number of samples was appropriate considering the available time and budget. The single variate and/or multivariate linear regression soil-landscape models were successfully established. Those models revealed significant inter-relations among the soil depths of the B and B+BC horizons, solum thickness, and landscape factors, including slope and surface stone contents (p < 0.003). The mean errors in the validation of the soil-landscape model were low and acceptable for this case study. In addition, the slope data derived from the DEM (digital elevation model) database in this case study were used to predict the soil depths of the B, B+BC horizons and the solum thickness without carrying out a field survey. Surface stone should be collected in a field soil survey to increase the precision of soil depth prediction of the B and B+BC horizons, and the solum thickness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鳗鱼鸽子发布了新的文献求助10
刚刚
蓝蓝的天空完成签到 ,获得积分10
1秒前
正直的以冬完成签到,获得积分10
1秒前
小蛇玩完成签到,获得积分10
2秒前
yhmi0809完成签到,获得积分10
2秒前
宫宛儿完成签到,获得积分10
2秒前
JamesPei应助韩老魔采纳,获得10
3秒前
潘雨露完成签到 ,获得积分10
4秒前
4秒前
大气的莆完成签到 ,获得积分10
5秒前
王慧宇发布了新的文献求助30
5秒前
现代的擎苍完成签到,获得积分10
6秒前
花Cheung完成签到,获得积分10
6秒前
6秒前
6秒前
bobo完成签到 ,获得积分10
7秒前
三棱镜完成签到,获得积分10
9秒前
emmmmmq发布了新的文献求助10
9秒前
问题多多完成签到 ,获得积分10
12秒前
ephore应助liudw采纳,获得50
12秒前
kevin1018完成签到,获得积分10
12秒前
王一发布了新的文献求助10
12秒前
三棱镜发布了新的文献求助30
12秒前
未明的感觉完成签到,获得积分10
13秒前
危机的雍发布了新的文献求助10
13秒前
李爱国应助猪猪hero采纳,获得10
14秒前
adovj完成签到 ,获得积分10
14秒前
搜集达人应助zbzfp2025采纳,获得10
14秒前
汕头凯奇完成签到,获得积分10
15秒前
玉宇琼楼完成签到 ,获得积分20
15秒前
长情访梦完成签到,获得积分10
15秒前
善学以致用应助机密塔采纳,获得10
16秒前
16秒前
17秒前
无花果应助结构女王采纳,获得10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
田様应助龙山采纳,获得10
17秒前
李健的小迷弟应助emmmmmq采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911267
求助须知:如何正确求助?哪些是违规求助? 4186820
关于积分的说明 13001311
捐赠科研通 3954578
什么是DOI,文献DOI怎么找? 2168351
邀请新用户注册赠送积分活动 1186772
关于科研通互助平台的介绍 1094177