Prediction of soil depth using a soil-landscape regression model: a case study on forest soils in southern Taiwan.

数字土壤制图 仰角(弹道) 土壤水分 土壤图 环境科学 土壤科学 土壤测量 数字高程模型 多元统计 水文学(农业) 回归分析 土壤系列 线性回归 土层 地质学 自然地理学 土壤分类 地理 数学 统计 岩土工程 遥感 几何学
作者
Chen‐Chi Tsai,Zueng‐Sang Chen,Chin-Tzer Duh,Fu-Wen Horng
出处
期刊:PubMed 卷期号:25 (1): 34-9 被引量:40
链接
标识
摘要

Techniques for conventional forest soil surveys in Taiwan need to be further developed in order to save time and money. Although some soil-landscape regression models have been developed to describe and predict soil properties and depths, they have seldom been studied in Taiwan. This study establishes linear soil-landscape regression models related to soil depths and landscape factors found in the forest soils of southern Taiwan. These models were evaluated by validating the models according to their mean errors and root mean square errors. The study was carried out at the 60,000 ha Chishan Forest Working Circle. About 310 soil pedons were collected. The landscape factors included elevation, slope, aspect, and surface stone contents. Sixty percent of the total field samples were used to establish the soil-landscape regression models, and forty % were used for validation. The sampling strategy indicated that each representative pedon covers an area of about 147 ha. The number of samples was appropriate considering the available time and budget. The single variate and/or multivariate linear regression soil-landscape models were successfully established. Those models revealed significant inter-relations among the soil depths of the B and B+BC horizons, solum thickness, and landscape factors, including slope and surface stone contents (p < 0.003). The mean errors in the validation of the soil-landscape model were low and acceptable for this case study. In addition, the slope data derived from the DEM (digital elevation model) database in this case study were used to predict the soil depths of the B, B+BC horizons and the solum thickness without carrying out a field survey. Surface stone should be collected in a field soil survey to increase the precision of soil depth prediction of the B and B+BC horizons, and the solum thickness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JoaquinH发布了新的文献求助10
刚刚
小席要进步完成签到 ,获得积分10
1秒前
jiang完成签到,获得积分10
1秒前
陈二牛发布了新的文献求助10
1秒前
bkagyin应助Qingcyx采纳,获得10
2秒前
sullyeon完成签到 ,获得积分10
2秒前
1111完成签到,获得积分10
3秒前
机灵鞋垫完成签到,获得积分10
3秒前
丘比特应助沧笙踏歌采纳,获得30
3秒前
传奇3应助十一玮采纳,获得10
3秒前
4秒前
丁丽发布了新的文献求助10
4秒前
5秒前
zx关闭了zx文献求助
5秒前
Ava应助谭玲慧采纳,获得10
6秒前
Jack完成签到,获得积分10
7秒前
神羊完成签到,获得积分10
8秒前
LEMONS应助KYRIELIU采纳,获得10
9秒前
gyj1发布了新的文献求助10
9秒前
彩色傲柏完成签到,获得积分10
10秒前
stel7发布了新的文献求助30
10秒前
10秒前
12秒前
Lucas应助沧笙踏歌采纳,获得10
14秒前
龙韵完成签到,获得积分10
14秒前
烟花应助彩色傲柏采纳,获得10
14秒前
15秒前
这个大头张呀完成签到,获得积分10
17秒前
小二郎应助kyle采纳,获得10
18秒前
GERRARD完成签到,获得积分10
18秒前
19秒前
20秒前
海清完成签到,获得积分10
20秒前
Roy发布了新的文献求助10
21秒前
stel7完成签到,获得积分10
21秒前
彭于晏应助蜡笔采纳,获得10
24秒前
自然1111发布了新的文献求助30
24秒前
26秒前
量子星尘发布了新的文献求助30
26秒前
哈哈哈666发布了新的文献求助10
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961206
求助须知:如何正确求助?哪些是违规求助? 3507486
关于积分的说明 11136374
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790557
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186