Migraine classification using magnetic resonance imaging resting-state functional connectivity data

偏头痛 医学 功能磁共振成像 脑岛 静息状态功能磁共振成像 神经影像学 磁共振成像 后扣带 大脑活动与冥想 神经科学 心理学 内科学 脑电图 精神科 放射科
作者
Catherine D. Chong,Nathan Gaw,Yinlin Fu,Jing Li,Teresa Wu,Todd J. Schwedt
出处
期刊:Cephalalgia [SAGE]
卷期号:37 (9): 828-844 被引量:92
标识
DOI:10.1177/0333102416652091
摘要

Background This study used machine-learning techniques to develop discriminative brain-connectivity biomarkers from resting-state functional magnetic resonance neuroimaging ( rs-fMRI) data that distinguish between individual migraine patients and healthy controls. Methods This study included 58 migraine patients (mean age = 36.3 years; SD = 11.5) and 50 healthy controls (mean age = 35.9 years; SD = 11.0). The functional connections of 33 seeded pain-related regions were used as input for a brain classification algorithm that tested the accuracy of determining whether an individual brain MRI belongs to someone with migraine or to a healthy control. Results The best classification accuracy using a 10-fold cross-validation method was 86.1%. Resting functional connectivity of the right middle temporal, posterior insula, middle cingulate, left ventromedial prefrontal and bilateral amygdala regions best discriminated the migraine brain from that of a healthy control. Migraineurs with longer disease durations were classified more accurately (>14 years; 96.7% accuracy) compared to migraineurs with shorter disease durations (≤14 years; 82.1% accuracy). Conclusions Classification of migraine using rs-fMRI provides insights into pain circuits that are altered in migraine and could potentially contribute to the development of a new, noninvasive migraine biomarker. Migraineurs with longer disease burden were classified more accurately than migraineurs with shorter disease burden, potentially indicating that disease duration leads to reorganization of brain circuitry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
刚刚
隐形的雪碧完成签到,获得积分10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
852应助开心的访卉采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
小飞七应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
1秒前
小飞七应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
科目三应助1212采纳,获得10
1秒前
坚强亦丝应助qzj采纳,获得10
2秒前
2秒前
guoduan发布了新的文献求助10
3秒前
Raine完成签到,获得积分10
3秒前
雨夜星空发布了新的文献求助10
3秒前
Dollar完成签到 ,获得积分10
3秒前
斯文念波完成签到,获得积分20
4秒前
认真的珠发布了新的文献求助10
4秒前
能干发夹完成签到,获得积分10
4秒前
余杰完成签到,获得积分10
4秒前
5秒前
5秒前
Bambi发布了新的文献求助20
6秒前
自信南霜完成签到,获得积分10
6秒前
胖胖应助瑞秋采纳,获得10
6秒前
NexusExplorer应助晨阳采纳,获得10
6秒前
7秒前
能干发夹发布了新的文献求助10
7秒前
平淡盼旋发布了新的文献求助10
8秒前
汉堡包应助隐形的雪碧采纳,获得10
8秒前
9秒前
万能图书馆应助甜甜语堂采纳,获得10
10秒前
纪震宇发布了新的文献求助10
10秒前
微尘完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126