Colloidal Graphene Quantum Dots with Well-Defined Structures

石墨烯 半导体 带隙 量子点 纳米技术 载流子 材料科学 放松(心理学) 石墨烯纳米带 化学物理 光电子学 化学 心理学 社会心理学
作者
Xin Yan,Binsong Li,Liang‐shi Li
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:46 (10): 2254-2262 被引量:197
标识
DOI:10.1021/ar300137p
摘要

When the size of a semiconductor crystal is reduced to the nanometer scale, the crystal boundary significantly modifies electron distribution, making properties such as bandgap and energy relaxation dynamics size dependent. This phenomenon, known as quantum confinement, has been demonstrated in many semiconductor materials, leading to practical applications in areas such as bioimaging, photovoltaics, and light-emitting diodes. Graphene, a unique type of semiconductor, is a two-dimensional crystal with a zero bandgap and a zero effective mass of charge carriers. Consequently, we expect new phenomena from nanometer-sized graphene, or graphene quantum dots (QDs), because the energy of charge carriers in graphene follows size-scaling laws that differ from those in other semiconductors. From a chemistry point of view, graphene is made of carbon, an element for which researchers have developed a whole branch of chemistry. Thus, it is possible to synthesize graphene QDs through stepwise, well-controlled organic chemistry, achieving structures with an atomic precision that has not been possible for any other semiconductor materials. Recently, we developed a new solubilizing strategy that led to synthesis of stable colloidal graphene QDs with more than 100 conjugated carbon atoms, allowing us to study their properties in a new size regime. In this Account, we review our recent progress working with the colloidal graphene QDs, including their synthesis and stabilization, tuning of their properties, and new phenomena in energy relaxation dynamics. In particular, we have observed extraordinarily slow "electron cooling"--the relaxation of electrons from high excited states to lower ones. With further investigation, these high-energy electrons could potentially be harvested in solar energy applications, for example, creating more efficient photovoltaic cells. We discuss additional emerging opportunities with these new materials and current challenges, hoping to draw the interest of researchers in various fields to overcome these obstacles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zahahaha发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
阔达之卉发布了新的文献求助10
1秒前
1秒前
2秒前
Vincent发布了新的文献求助30
2秒前
2秒前
agnes完成签到,获得积分10
2秒前
3秒前
advance发布了新的文献求助10
3秒前
魔幻芒果发布了新的文献求助10
3秒前
肖琳完成签到 ,获得积分20
3秒前
学术小子发布了新的文献求助10
4秒前
李拾舟完成签到,获得积分10
4秒前
番茄鱼发布了新的文献求助10
5秒前
huhu完成签到,获得积分10
5秒前
CClaire完成签到,获得积分10
6秒前
Lucas应助yang采纳,获得10
6秒前
脑洞疼应助伍次友采纳,获得10
6秒前
6秒前
冯晓潮发布了新的文献求助10
7秒前
斯文败类应助樂楽采纳,获得10
7秒前
Zhj发布了新的文献求助10
7秒前
FashionBoy应助从容飞阳采纳,获得10
7秒前
7秒前
7秒前
科研通AI2S应助酷酷妙梦采纳,获得10
7秒前
万能图书馆应助小可采纳,获得10
9秒前
李健的小迷弟应助陈琳采纳,获得10
9秒前
yoyo完成签到,获得积分10
9秒前
能干雁凡发布了新的文献求助10
9秒前
顾矜应助cfer采纳,获得10
10秒前
自由的微风完成签到,获得积分10
10秒前
10秒前
zhd完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512432
求助须知:如何正确求助?哪些是违规求助? 4606873
关于积分的说明 14501499
捐赠科研通 4542174
什么是DOI,文献DOI怎么找? 2488952
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152