Colloidal Graphene Quantum Dots with Well-Defined Structures

石墨烯 半导体 带隙 量子点 纳米技术 载流子 材料科学 放松(心理学) 石墨烯纳米带 化学物理 光电子学 化学 心理学 社会心理学
作者
Xin Yan,Binsong Li,Liang‐shi Li
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:46 (10): 2254-2262 被引量:197
标识
DOI:10.1021/ar300137p
摘要

When the size of a semiconductor crystal is reduced to the nanometer scale, the crystal boundary significantly modifies electron distribution, making properties such as bandgap and energy relaxation dynamics size dependent. This phenomenon, known as quantum confinement, has been demonstrated in many semiconductor materials, leading to practical applications in areas such as bioimaging, photovoltaics, and light-emitting diodes. Graphene, a unique type of semiconductor, is a two-dimensional crystal with a zero bandgap and a zero effective mass of charge carriers. Consequently, we expect new phenomena from nanometer-sized graphene, or graphene quantum dots (QDs), because the energy of charge carriers in graphene follows size-scaling laws that differ from those in other semiconductors. From a chemistry point of view, graphene is made of carbon, an element for which researchers have developed a whole branch of chemistry. Thus, it is possible to synthesize graphene QDs through stepwise, well-controlled organic chemistry, achieving structures with an atomic precision that has not been possible for any other semiconductor materials. Recently, we developed a new solubilizing strategy that led to synthesis of stable colloidal graphene QDs with more than 100 conjugated carbon atoms, allowing us to study their properties in a new size regime. In this Account, we review our recent progress working with the colloidal graphene QDs, including their synthesis and stabilization, tuning of their properties, and new phenomena in energy relaxation dynamics. In particular, we have observed extraordinarily slow "electron cooling"--the relaxation of electrons from high excited states to lower ones. With further investigation, these high-energy electrons could potentially be harvested in solar energy applications, for example, creating more efficient photovoltaic cells. We discuss additional emerging opportunities with these new materials and current challenges, hoping to draw the interest of researchers in various fields to overcome these obstacles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
酷炫白易完成签到,获得积分10
2秒前
2秒前
2秒前
情怀应助现代的听云采纳,获得10
2秒前
夏天发布了新的文献求助10
2秒前
Jasper应助椰椰采纳,获得10
2秒前
ZT完成签到,获得积分10
3秒前
Zephyr完成签到,获得积分10
3秒前
3秒前
caoyy发布了新的文献求助10
3秒前
4秒前
4秒前
yx发布了新的文献求助10
4秒前
木小紫完成签到 ,获得积分20
4秒前
kiki完成签到,获得积分10
5秒前
所所应助小吉麻麻采纳,获得10
5秒前
mnjkio163完成签到,获得积分10
5秒前
5秒前
夹竹桃完成签到,获得积分10
5秒前
bkagyin应助悦耳的香岚采纳,获得10
6秒前
FashionBoy应助zhang采纳,获得10
6秒前
友好含雁发布了新的文献求助10
6秒前
和谐青柏应助lu采纳,获得10
6秒前
称心的西牛完成签到 ,获得积分10
6秒前
7秒前
lilac发布了新的文献求助10
7秒前
Jeri完成签到,获得积分10
7秒前
Orange应助dong采纳,获得10
7秒前
秦英杰发布了新的文献求助10
7秒前
7秒前
Akim应助liao_duoduo采纳,获得10
7秒前
马丁发布了新的文献求助30
7秒前
英姑应助哈哈哈哈采纳,获得10
8秒前
小马甲应助俊秀的念薇采纳,获得10
8秒前
子子子子瞻完成签到,获得积分10
8秒前
8秒前
asdfrfg发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827