Colloidal Graphene Quantum Dots with Well-Defined Structures

石墨烯 半导体 带隙 量子点 纳米技术 载流子 材料科学 放松(心理学) 石墨烯纳米带 化学物理 光电子学 化学 心理学 社会心理学
作者
Xin Yan,Binsong Li,Liang‐shi Li
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:46 (10): 2254-2262 被引量:197
标识
DOI:10.1021/ar300137p
摘要

When the size of a semiconductor crystal is reduced to the nanometer scale, the crystal boundary significantly modifies electron distribution, making properties such as bandgap and energy relaxation dynamics size dependent. This phenomenon, known as quantum confinement, has been demonstrated in many semiconductor materials, leading to practical applications in areas such as bioimaging, photovoltaics, and light-emitting diodes. Graphene, a unique type of semiconductor, is a two-dimensional crystal with a zero bandgap and a zero effective mass of charge carriers. Consequently, we expect new phenomena from nanometer-sized graphene, or graphene quantum dots (QDs), because the energy of charge carriers in graphene follows size-scaling laws that differ from those in other semiconductors. From a chemistry point of view, graphene is made of carbon, an element for which researchers have developed a whole branch of chemistry. Thus, it is possible to synthesize graphene QDs through stepwise, well-controlled organic chemistry, achieving structures with an atomic precision that has not been possible for any other semiconductor materials. Recently, we developed a new solubilizing strategy that led to synthesis of stable colloidal graphene QDs with more than 100 conjugated carbon atoms, allowing us to study their properties in a new size regime. In this Account, we review our recent progress working with the colloidal graphene QDs, including their synthesis and stabilization, tuning of their properties, and new phenomena in energy relaxation dynamics. In particular, we have observed extraordinarily slow "electron cooling"--the relaxation of electrons from high excited states to lower ones. With further investigation, these high-energy electrons could potentially be harvested in solar energy applications, for example, creating more efficient photovoltaic cells. We discuss additional emerging opportunities with these new materials and current challenges, hoping to draw the interest of researchers in various fields to overcome these obstacles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重帆布鞋完成签到 ,获得积分10
刚刚
刚刚
Ngu完成签到,获得积分10
刚刚
1秒前
动人的秋发布了新的文献求助10
1秒前
FashionBoy应助monkona采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
hope应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
小乐比发布了新的文献求助10
3秒前
偶的否发布了新的文献求助30
4秒前
4秒前
6秒前
唾沫星子完成签到,获得积分10
6秒前
7秒前
ding应助动人的秋采纳,获得10
8秒前
JueruiWang1258完成签到,获得积分10
8秒前
LuckyCookie发布了新的文献求助10
11秒前
田様应助C_Cppp采纳,获得10
11秒前
wykkkkk完成签到,获得积分10
11秒前
曲怜阳发布了新的文献求助10
12秒前
合适冰棍完成签到 ,获得积分10
13秒前
FIN应助aaa采纳,获得10
15秒前
白露关注了科研通微信公众号
16秒前
科研小菜鸡完成签到,获得积分10
17秒前
尊敬山兰完成签到,获得积分10
18秒前
sheng完成签到,获得积分10
18秒前
18秒前
jjkkee完成签到,获得积分10
20秒前
20秒前
活泼莫英发布了新的文献求助10
22秒前
24秒前
24秒前
sheng发布了新的文献求助10
25秒前
AI完成签到 ,获得积分10
25秒前
方羽应助linda采纳,获得10
26秒前
28秒前
科研废物完成签到,获得积分10
29秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348980
求助须知:如何正确求助?哪些是违规求助? 2975143
关于积分的说明 8667699
捐赠科研通 2655836
什么是DOI,文献DOI怎么找? 1454224
科研通“疑难数据库(出版商)”最低求助积分说明 673254
邀请新用户注册赠送积分活动 663696