Colloidal Graphene Quantum Dots with Well-Defined Structures

石墨烯 半导体 带隙 量子点 纳米技术 载流子 材料科学 放松(心理学) 石墨烯纳米带 化学物理 光电子学 化学 心理学 社会心理学
作者
Xin Yan,Binsong Li,Liang‐shi Li
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:46 (10): 2254-2262 被引量:197
标识
DOI:10.1021/ar300137p
摘要

When the size of a semiconductor crystal is reduced to the nanometer scale, the crystal boundary significantly modifies electron distribution, making properties such as bandgap and energy relaxation dynamics size dependent. This phenomenon, known as quantum confinement, has been demonstrated in many semiconductor materials, leading to practical applications in areas such as bioimaging, photovoltaics, and light-emitting diodes. Graphene, a unique type of semiconductor, is a two-dimensional crystal with a zero bandgap and a zero effective mass of charge carriers. Consequently, we expect new phenomena from nanometer-sized graphene, or graphene quantum dots (QDs), because the energy of charge carriers in graphene follows size-scaling laws that differ from those in other semiconductors. From a chemistry point of view, graphene is made of carbon, an element for which researchers have developed a whole branch of chemistry. Thus, it is possible to synthesize graphene QDs through stepwise, well-controlled organic chemistry, achieving structures with an atomic precision that has not been possible for any other semiconductor materials. Recently, we developed a new solubilizing strategy that led to synthesis of stable colloidal graphene QDs with more than 100 conjugated carbon atoms, allowing us to study their properties in a new size regime. In this Account, we review our recent progress working with the colloidal graphene QDs, including their synthesis and stabilization, tuning of their properties, and new phenomena in energy relaxation dynamics. In particular, we have observed extraordinarily slow "electron cooling"--the relaxation of electrons from high excited states to lower ones. With further investigation, these high-energy electrons could potentially be harvested in solar energy applications, for example, creating more efficient photovoltaic cells. We discuss additional emerging opportunities with these new materials and current challenges, hoping to draw the interest of researchers in various fields to overcome these obstacles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小雨完成签到,获得积分10
1秒前
小黄瓜896发布了新的文献求助10
2秒前
小鱼儿完成签到,获得积分10
3秒前
屿鑫完成签到,获得积分10
4秒前
慕青应助小黄瓜896采纳,获得10
12秒前
自信鞯完成签到,获得积分10
12秒前
12秒前
freebird完成签到,获得积分10
13秒前
feiyang完成签到,获得积分10
13秒前
学术小白完成签到 ,获得积分10
14秒前
Light完成签到,获得积分10
14秒前
纳古菌完成签到,获得积分10
14秒前
JamesPei应助huang采纳,获得10
15秒前
白小超人完成签到 ,获得积分10
15秒前
cc发布了新的文献求助10
15秒前
当时的发布了新的文献求助30
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
橙子是不是完成签到,获得积分10
19秒前
郭莹莹发布了新的文献求助10
19秒前
ding应助粥粥粥采纳,获得10
20秒前
Gaowenjie完成签到,获得积分20
21秒前
蓝天发布了新的文献求助10
22秒前
23秒前
ACCEPT完成签到,获得积分10
23秒前
outbed完成签到,获得积分10
24秒前
宋晓静完成签到,获得积分10
25秒前
都要多喝水完成签到,获得积分10
25秒前
mumu发布了新的文献求助10
26秒前
陆陆完成签到 ,获得积分10
26秒前
26秒前
个性慕卉完成签到,获得积分10
27秒前
图图完成签到 ,获得积分10
27秒前
cc完成签到,获得积分10
27秒前
27秒前
领导范儿应助科研通管家采纳,获得10
29秒前
Hello应助科研通管家采纳,获得10
29秒前
wwy应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
思源应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603632
求助须知:如何正确求助?哪些是违规求助? 4688639
关于积分的说明 14855202
捐赠科研通 4694366
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806