Colloidal Graphene Quantum Dots with Well-Defined Structures

石墨烯 半导体 带隙 量子点 纳米技术 载流子 材料科学 放松(心理学) 石墨烯纳米带 化学物理 光电子学 化学 心理学 社会心理学
作者
Xin Yan,Binsong Li,Liang‐shi Li
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:46 (10): 2254-2262 被引量:197
标识
DOI:10.1021/ar300137p
摘要

When the size of a semiconductor crystal is reduced to the nanometer scale, the crystal boundary significantly modifies electron distribution, making properties such as bandgap and energy relaxation dynamics size dependent. This phenomenon, known as quantum confinement, has been demonstrated in many semiconductor materials, leading to practical applications in areas such as bioimaging, photovoltaics, and light-emitting diodes. Graphene, a unique type of semiconductor, is a two-dimensional crystal with a zero bandgap and a zero effective mass of charge carriers. Consequently, we expect new phenomena from nanometer-sized graphene, or graphene quantum dots (QDs), because the energy of charge carriers in graphene follows size-scaling laws that differ from those in other semiconductors. From a chemistry point of view, graphene is made of carbon, an element for which researchers have developed a whole branch of chemistry. Thus, it is possible to synthesize graphene QDs through stepwise, well-controlled organic chemistry, achieving structures with an atomic precision that has not been possible for any other semiconductor materials. Recently, we developed a new solubilizing strategy that led to synthesis of stable colloidal graphene QDs with more than 100 conjugated carbon atoms, allowing us to study their properties in a new size regime. In this Account, we review our recent progress working with the colloidal graphene QDs, including their synthesis and stabilization, tuning of their properties, and new phenomena in energy relaxation dynamics. In particular, we have observed extraordinarily slow "electron cooling"--the relaxation of electrons from high excited states to lower ones. With further investigation, these high-energy electrons could potentially be harvested in solar energy applications, for example, creating more efficient photovoltaic cells. We discuss additional emerging opportunities with these new materials and current challenges, hoping to draw the interest of researchers in various fields to overcome these obstacles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗的睫毛膏完成签到,获得积分10
1秒前
3秒前
4秒前
女爰舍予发布了新的文献求助10
4秒前
A_Caterpillar完成签到,获得积分10
6秒前
6秒前
8秒前
猪蹄发布了新的文献求助10
10秒前
小顾完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
施雨杭发布了新的文献求助10
12秒前
充电宝应助watermelon采纳,获得10
13秒前
wl1217完成签到 ,获得积分10
13秒前
16秒前
小蘑菇应助菠萝水手采纳,获得10
16秒前
淡然的夜白完成签到,获得积分10
18秒前
limuu发布了新的文献求助10
18秒前
18秒前
18秒前
充电宝应助鹿靡采纳,获得30
19秒前
英姑应助下X下采纳,获得10
20秒前
过时的映雁完成签到,获得积分10
21秒前
mm完成签到,获得积分10
23秒前
白桦完成签到 ,获得积分10
23秒前
watermelon发布了新的文献求助10
23秒前
24秒前
25秒前
25秒前
66完成签到 ,获得积分10
26秒前
小木瓜应助爱丽丝敏采纳,获得10
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
gaolizheng应助科研通管家采纳,获得10
27秒前
27秒前
领导范儿应助科研通管家采纳,获得10
27秒前
ding应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
无极微光应助科研通管家采纳,获得20
27秒前
小马甲应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
所所应助科研通管家采纳,获得100
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419479
求助须知:如何正确求助?哪些是违规求助? 4534713
关于积分的说明 14146435
捐赠科研通 4451326
什么是DOI,文献DOI怎么找? 2441690
邀请新用户注册赠送积分活动 1433274
关于科研通互助平台的介绍 1410579