亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Drug–Disease Association and Drug-Repositioning Predictions in Complex Diseases Using Causal Inference–Probabilistic Matrix Factorization

药物重新定位 因果推理 推论 药品 疾病 医学 联想(心理学) 接收机工作特性 人工智能 机器学习 计算生物学 计算机科学 内科学 药理学 心理学 生物 病理 心理治疗师
作者
Jihong Yang,Zheng Li,Xiaohui Fan,Yiyu Cheng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:54 (9): 2562-2569 被引量:90
标识
DOI:10.1021/ci500340n
摘要

The high incidence of complex diseases has become a worldwide threat to human health. Multiple targets and pathways are perturbed during the pathological process of complex diseases. Systematic investigation of complex relationship between drugs and diseases is necessary for new association discovery and drug repurposing. For this purpose, three causal networks were constructed herein for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. A causal inference-probabilistic matrix factorization (CI-PMF) approach was proposed to predict and classify drug–disease associations, and further used for drug-repositioning predictions. First, multilevel systematic relations between drugs and diseases were integrated from heterogeneous databases to construct causal networks connecting drug–target–pathway–gene–disease. Then, the association scores between drugs and diseases were assessed by evaluating a drug's effects on multiple targets and pathways. Furthermore, PMF models were learned based on known interactions, and associations were then classified into three types by trained models. Finally, therapeutic associations were predicted based upon the ranking of association scores and predicted association types. In terms of drug–disease association prediction, modified causal inference included in CI-PMF outperformed existing causal inference with a higher AUC (area under receiver operating characteristic curve) score and greater precision. Moreover, CI-PMF performed better than single modified causal inference in predicting therapeutic drug–disease associations. In the top 30% of predicted associations, 58.6% (136/232), 50.8% (31/61), and 39.8% (140/352) hit known therapeutic associations, while precisions obtained by the latter were only 10.2% (231/2264), 8.8% (36/411), and 9.7% (189/1948). Clinical verifications were further conducted for the top 100 newly predicted therapeutic associations. As a result, 21, 12, and 32 associations have been studied and many treatment effects of drugs on diseases were investigated for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. Related chains in causal networks were extracted for these 65 clinical-verified associations, and we further illustrated the therapeutic role of etodolac in breast cancer by inferred chains. Overall, CI-PMF is a useful approach for associating drugs with complex diseases and provides potential values for drug repositioning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚子完成签到 ,获得积分0
6秒前
9秒前
13秒前
华仔应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
盛夏如花发布了新的文献求助10
30秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6应助吃吃菜菜吧采纳,获得10
1分钟前
元宝团子完成签到,获得积分10
2分钟前
Sherrry完成签到,获得积分10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
深情安青应助Sherrry采纳,获得10
2分钟前
CodeCraft应助lkx采纳,获得10
2分钟前
DD发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
方沅完成签到,获得积分10
3分钟前
andrele发布了新的文献求助10
3分钟前
Abdurrahman完成签到,获得积分10
3分钟前
李健的小迷弟应助andrele采纳,获得10
4分钟前
科研通AI6应助盛夏如花采纳,获得10
4分钟前
4分钟前
我是老大应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
MaoTing发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
MaoTing完成签到,获得积分10
4分钟前
3080完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
乐乐应助杏子尽欢冰采纳,获得10
5分钟前
andrele完成签到,获得积分10
5分钟前
hhhhhh完成签到,获得积分10
5分钟前
fdwang完成签到 ,获得积分10
5分钟前
hhhhhh发布了新的文献求助30
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657911
求助须知:如何正确求助?哪些是违规求助? 4814204
关于积分的说明 15080608
捐赠科研通 4816172
什么是DOI,文献DOI怎么找? 2577173
邀请新用户注册赠送积分活动 1532199
关于科研通互助平台的介绍 1490727