清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Drug–Disease Association and Drug-Repositioning Predictions in Complex Diseases Using Causal Inference–Probabilistic Matrix Factorization

药物重新定位 因果推理 推论 药品 疾病 医学 联想(心理学) 接收机工作特性 人工智能 机器学习 计算生物学 计算机科学 内科学 药理学 心理学 生物 病理 心理治疗师
作者
Jihong Yang,Zheng Li,Xiaohui Fan,Yiyu Cheng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:54 (9): 2562-2569 被引量:90
标识
DOI:10.1021/ci500340n
摘要

The high incidence of complex diseases has become a worldwide threat to human health. Multiple targets and pathways are perturbed during the pathological process of complex diseases. Systematic investigation of complex relationship between drugs and diseases is necessary for new association discovery and drug repurposing. For this purpose, three causal networks were constructed herein for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. A causal inference-probabilistic matrix factorization (CI-PMF) approach was proposed to predict and classify drug–disease associations, and further used for drug-repositioning predictions. First, multilevel systematic relations between drugs and diseases were integrated from heterogeneous databases to construct causal networks connecting drug–target–pathway–gene–disease. Then, the association scores between drugs and diseases were assessed by evaluating a drug's effects on multiple targets and pathways. Furthermore, PMF models were learned based on known interactions, and associations were then classified into three types by trained models. Finally, therapeutic associations were predicted based upon the ranking of association scores and predicted association types. In terms of drug–disease association prediction, modified causal inference included in CI-PMF outperformed existing causal inference with a higher AUC (area under receiver operating characteristic curve) score and greater precision. Moreover, CI-PMF performed better than single modified causal inference in predicting therapeutic drug–disease associations. In the top 30% of predicted associations, 58.6% (136/232), 50.8% (31/61), and 39.8% (140/352) hit known therapeutic associations, while precisions obtained by the latter were only 10.2% (231/2264), 8.8% (36/411), and 9.7% (189/1948). Clinical verifications were further conducted for the top 100 newly predicted therapeutic associations. As a result, 21, 12, and 32 associations have been studied and many treatment effects of drugs on diseases were investigated for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. Related chains in causal networks were extracted for these 65 clinical-verified associations, and we further illustrated the therapeutic role of etodolac in breast cancer by inferred chains. Overall, CI-PMF is a useful approach for associating drugs with complex diseases and provides potential values for drug repositioning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaowangwang完成签到 ,获得积分10
7秒前
10秒前
TTTTTT发布了新的文献求助10
16秒前
dong发布了新的文献求助10
38秒前
朴蒲萤荧完成签到,获得积分10
43秒前
wujiwuhui完成签到 ,获得积分10
50秒前
宇文雨文完成签到 ,获得积分10
55秒前
笑对人生完成签到 ,获得积分10
1分钟前
冷傲迎梅完成签到 ,获得积分10
1分钟前
1分钟前
代代发布了新的文献求助10
1分钟前
代代完成签到,获得积分10
1分钟前
xue完成签到 ,获得积分10
1分钟前
慕青应助科研通管家采纳,获得10
2分钟前
fed完成签到 ,获得积分10
2分钟前
ww完成签到,获得积分10
2分钟前
胡国伦完成签到 ,获得积分10
2分钟前
clock完成签到 ,获得积分10
3分钟前
炳灿完成签到 ,获得积分10
3分钟前
future完成签到 ,获得积分10
3分钟前
dream完成签到 ,获得积分10
4分钟前
打打应助实验顺顺利利采纳,获得10
4分钟前
科研通AI5应助KKK采纳,获得30
4分钟前
4分钟前
KKK完成签到,获得积分20
4分钟前
V_I_G完成签到 ,获得积分10
4分钟前
4分钟前
KKK发布了新的文献求助30
4分钟前
TTTTTT发布了新的文献求助10
4分钟前
5分钟前
5分钟前
vitamin完成签到 ,获得积分10
5分钟前
外向易形完成签到,获得积分10
5分钟前
小鱼女侠完成签到 ,获得积分10
5分钟前
GingerF应助阿辉采纳,获得10
6分钟前
hugeyoung完成签到,获得积分10
6分钟前
magictoo完成签到,获得积分10
7分钟前
徐团伟完成签到 ,获得积分10
8分钟前
小蘑菇应助科研通管家采纳,获得10
8分钟前
al完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4984325
求助须知:如何正确求助?哪些是违规求助? 4235277
关于积分的说明 13189883
捐赠科研通 4027819
什么是DOI,文献DOI怎么找? 2203531
邀请新用户注册赠送积分活动 1215658
关于科研通互助平台的介绍 1133039