Drug–Disease Association and Drug-Repositioning Predictions in Complex Diseases Using Causal Inference–Probabilistic Matrix Factorization

药物重新定位 因果推理 推论 药品 疾病 医学 联想(心理学) 接收机工作特性 人工智能 机器学习 计算生物学 计算机科学 内科学 药理学 心理学 生物 病理 心理治疗师
作者
Jihong Yang,Zheng Li,Xiaohui Fan,Yiyu Cheng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:54 (9): 2562-2569 被引量:90
标识
DOI:10.1021/ci500340n
摘要

The high incidence of complex diseases has become a worldwide threat to human health. Multiple targets and pathways are perturbed during the pathological process of complex diseases. Systematic investigation of complex relationship between drugs and diseases is necessary for new association discovery and drug repurposing. For this purpose, three causal networks were constructed herein for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. A causal inference-probabilistic matrix factorization (CI-PMF) approach was proposed to predict and classify drug–disease associations, and further used for drug-repositioning predictions. First, multilevel systematic relations between drugs and diseases were integrated from heterogeneous databases to construct causal networks connecting drug–target–pathway–gene–disease. Then, the association scores between drugs and diseases were assessed by evaluating a drug's effects on multiple targets and pathways. Furthermore, PMF models were learned based on known interactions, and associations were then classified into three types by trained models. Finally, therapeutic associations were predicted based upon the ranking of association scores and predicted association types. In terms of drug–disease association prediction, modified causal inference included in CI-PMF outperformed existing causal inference with a higher AUC (area under receiver operating characteristic curve) score and greater precision. Moreover, CI-PMF performed better than single modified causal inference in predicting therapeutic drug–disease associations. In the top 30% of predicted associations, 58.6% (136/232), 50.8% (31/61), and 39.8% (140/352) hit known therapeutic associations, while precisions obtained by the latter were only 10.2% (231/2264), 8.8% (36/411), and 9.7% (189/1948). Clinical verifications were further conducted for the top 100 newly predicted therapeutic associations. As a result, 21, 12, and 32 associations have been studied and many treatment effects of drugs on diseases were investigated for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. Related chains in causal networks were extracted for these 65 clinical-verified associations, and we further illustrated the therapeutic role of etodolac in breast cancer by inferred chains. Overall, CI-PMF is a useful approach for associating drugs with complex diseases and provides potential values for drug repositioning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喻语儿发布了新的文献求助10
1秒前
kiddos3e完成签到,获得积分10
1秒前
噗噜噜发布了新的文献求助30
2秒前
2秒前
hlx发布了新的文献求助10
2秒前
lewis17完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
领导范儿应助Kam采纳,获得10
11秒前
郑小发布了新的文献求助30
14秒前
15秒前
和谐的柠檬完成签到,获得积分10
15秒前
123完成签到 ,获得积分10
17秒前
饱满冷卉完成签到,获得积分10
19秒前
20秒前
20秒前
猪猪想要平静的生活完成签到,获得积分10
20秒前
斯文败类应助噗噜噜采纳,获得30
20秒前
CAOHOU举报贝尔求助涉嫌违规
23秒前
zqlxueli完成签到 ,获得积分10
23秒前
orixero应助jrzsy采纳,获得10
25秒前
Hello应助水蜜桃幽灵采纳,获得10
26秒前
XiaoMing完成签到,获得积分10
26秒前
陈展峰发布了新的文献求助10
26秒前
延胡索完成签到,获得积分10
27秒前
SYLH应助sresr采纳,获得10
28秒前
叶子完成签到,获得积分10
31秒前
windmill完成签到,获得积分10
32秒前
33秒前
35秒前
123发布了新的文献求助20
35秒前
大模型应助五山第一院士采纳,获得10
36秒前
zcm1999完成签到,获得积分10
37秒前
之道完成签到,获得积分10
37秒前
yyfsummer完成签到,获得积分10
39秒前
ei123完成签到,获得积分10
39秒前
共享精神应助flymove采纳,获得10
41秒前
酷炫鑫发布了新的文献求助10
41秒前
43秒前
郑小完成签到,获得积分10
43秒前
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124544
捐赠科研通 3237326
什么是DOI,文献DOI怎么找? 1789102
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844