Drug–Disease Association and Drug-Repositioning Predictions in Complex Diseases Using Causal Inference–Probabilistic Matrix Factorization

药物重新定位 因果推理 推论 药品 疾病 医学 联想(心理学) 接收机工作特性 人工智能 机器学习 计算生物学 计算机科学 内科学 药理学 心理学 生物 病理 心理治疗师
作者
Jihong Yang,Zheng Li,Xiaohui Fan,Yiyu Cheng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:54 (9): 2562-2569 被引量:90
标识
DOI:10.1021/ci500340n
摘要

The high incidence of complex diseases has become a worldwide threat to human health. Multiple targets and pathways are perturbed during the pathological process of complex diseases. Systematic investigation of complex relationship between drugs and diseases is necessary for new association discovery and drug repurposing. For this purpose, three causal networks were constructed herein for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. A causal inference-probabilistic matrix factorization (CI-PMF) approach was proposed to predict and classify drug–disease associations, and further used for drug-repositioning predictions. First, multilevel systematic relations between drugs and diseases were integrated from heterogeneous databases to construct causal networks connecting drug–target–pathway–gene–disease. Then, the association scores between drugs and diseases were assessed by evaluating a drug's effects on multiple targets and pathways. Furthermore, PMF models were learned based on known interactions, and associations were then classified into three types by trained models. Finally, therapeutic associations were predicted based upon the ranking of association scores and predicted association types. In terms of drug–disease association prediction, modified causal inference included in CI-PMF outperformed existing causal inference with a higher AUC (area under receiver operating characteristic curve) score and greater precision. Moreover, CI-PMF performed better than single modified causal inference in predicting therapeutic drug–disease associations. In the top 30% of predicted associations, 58.6% (136/232), 50.8% (31/61), and 39.8% (140/352) hit known therapeutic associations, while precisions obtained by the latter were only 10.2% (231/2264), 8.8% (36/411), and 9.7% (189/1948). Clinical verifications were further conducted for the top 100 newly predicted therapeutic associations. As a result, 21, 12, and 32 associations have been studied and many treatment effects of drugs on diseases were investigated for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. Related chains in causal networks were extracted for these 65 clinical-verified associations, and we further illustrated the therapeutic role of etodolac in breast cancer by inferred chains. Overall, CI-PMF is a useful approach for associating drugs with complex diseases and provides potential values for drug repositioning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
doclarrin完成签到 ,获得积分10
1秒前
扑火退羽完成签到,获得积分10
2秒前
简单的尔风完成签到 ,获得积分10
2秒前
3秒前
angen完成签到 ,获得积分10
4秒前
夜雨诗意完成签到,获得积分10
4秒前
hyman1218发布了新的文献求助20
5秒前
宫宛儿完成签到,获得积分10
6秒前
yiling发布了新的文献求助10
6秒前
柏林熊完成签到,获得积分10
6秒前
甜甜秋荷完成签到,获得积分10
7秒前
11秒前
共享精神应助yiling采纳,获得10
13秒前
三杠完成签到 ,获得积分10
14秒前
14秒前
小张完成签到 ,获得积分10
14秒前
lani完成签到 ,获得积分10
16秒前
传奇3应助MXX采纳,获得10
16秒前
高海龙完成签到,获得积分10
17秒前
orange完成签到 ,获得积分10
17秒前
有魅力琳发布了新的文献求助10
18秒前
July完成签到,获得积分0
21秒前
帆帆帆完成签到 ,获得积分10
22秒前
xiaokache完成签到,获得积分20
24秒前
yiling完成签到,获得积分10
27秒前
27秒前
ax发布了新的文献求助10
29秒前
冷傲凝琴完成签到,获得积分10
30秒前
beleve完成签到,获得积分10
31秒前
小栩完成签到 ,获得积分10
33秒前
上下完成签到 ,获得积分10
34秒前
MXX发布了新的文献求助10
34秒前
受伤的薯片完成签到 ,获得积分10
35秒前
看见了紫荆花完成签到 ,获得积分10
36秒前
whz完成签到,获得积分10
36秒前
abcdefg发布了新的文献求助10
36秒前
猴王完成签到,获得积分10
37秒前
雪白的紫翠完成签到 ,获得积分10
38秒前
DONNYTIO完成签到,获得积分10
40秒前
黑大侠完成签到,获得积分10
43秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180028
求助须知:如何正确求助?哪些是违规求助? 2830388
关于积分的说明 7976586
捐赠科研通 2491954
什么是DOI,文献DOI怎么找? 1329130
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954