亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Drug–Disease Association and Drug-Repositioning Predictions in Complex Diseases Using Causal Inference–Probabilistic Matrix Factorization

药物重新定位 因果推理 推论 药品 疾病 医学 联想(心理学) 接收机工作特性 人工智能 机器学习 计算生物学 计算机科学 内科学 药理学 心理学 生物 病理 心理治疗师
作者
Jihong Yang,Zheng Li,Xiaohui Fan,Yiyu Cheng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:54 (9): 2562-2569 被引量:90
标识
DOI:10.1021/ci500340n
摘要

The high incidence of complex diseases has become a worldwide threat to human health. Multiple targets and pathways are perturbed during the pathological process of complex diseases. Systematic investigation of complex relationship between drugs and diseases is necessary for new association discovery and drug repurposing. For this purpose, three causal networks were constructed herein for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. A causal inference-probabilistic matrix factorization (CI-PMF) approach was proposed to predict and classify drug–disease associations, and further used for drug-repositioning predictions. First, multilevel systematic relations between drugs and diseases were integrated from heterogeneous databases to construct causal networks connecting drug–target–pathway–gene–disease. Then, the association scores between drugs and diseases were assessed by evaluating a drug's effects on multiple targets and pathways. Furthermore, PMF models were learned based on known interactions, and associations were then classified into three types by trained models. Finally, therapeutic associations were predicted based upon the ranking of association scores and predicted association types. In terms of drug–disease association prediction, modified causal inference included in CI-PMF outperformed existing causal inference with a higher AUC (area under receiver operating characteristic curve) score and greater precision. Moreover, CI-PMF performed better than single modified causal inference in predicting therapeutic drug–disease associations. In the top 30% of predicted associations, 58.6% (136/232), 50.8% (31/61), and 39.8% (140/352) hit known therapeutic associations, while precisions obtained by the latter were only 10.2% (231/2264), 8.8% (36/411), and 9.7% (189/1948). Clinical verifications were further conducted for the top 100 newly predicted therapeutic associations. As a result, 21, 12, and 32 associations have been studied and many treatment effects of drugs on diseases were investigated for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. Related chains in causal networks were extracted for these 65 clinical-verified associations, and we further illustrated the therapeutic role of etodolac in breast cancer by inferred chains. Overall, CI-PMF is a useful approach for associating drugs with complex diseases and provides potential values for drug repositioning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
从容海完成签到 ,获得积分10
3秒前
6秒前
6秒前
6秒前
ding应助科研通管家采纳,获得10
6秒前
7秒前
钮若翠完成签到,获得积分10
9秒前
钮若翠发布了新的文献求助10
11秒前
14秒前
18秒前
Pretrial完成签到 ,获得积分10
25秒前
奇怪完成签到,获得积分10
29秒前
Cpp完成签到 ,获得积分10
29秒前
31秒前
cui发布了新的文献求助10
34秒前
34秒前
土豪的摩托完成签到 ,获得积分10
35秒前
37秒前
Panther完成签到,获得积分10
38秒前
懒回顾发布了新的文献求助10
38秒前
何为完成签到 ,获得积分10
41秒前
解冰凡完成签到,获得积分10
43秒前
43秒前
懒回顾完成签到,获得积分10
43秒前
xiuxiu完成签到 ,获得积分0
45秒前
46秒前
刘忙完成签到,获得积分10
47秒前
cy0824完成签到 ,获得积分10
48秒前
zhaoyu完成签到 ,获得积分10
50秒前
瞿琼瑶完成签到,获得积分10
55秒前
One发布了新的文献求助10
55秒前
SciGPT应助超级的路人采纳,获得10
59秒前
水牛完成签到,获得积分10
1分钟前
1分钟前
mathmotive完成签到,获得积分10
1分钟前
甜蜜乐松发布了新的文献求助10
1分钟前
月见完成签到 ,获得积分10
1分钟前
里里涵发布了新的文献求助10
1分钟前
舒心凡应助专一的摩托车采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606518
求助须知:如何正确求助?哪些是违规求助? 4690909
关于积分的说明 14866536
捐赠科研通 4706185
什么是DOI,文献DOI怎么找? 2542718
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276