硫氧还蛋白
过氧化物还原蛋白
铁氧还蛋白硫氧还蛋白还原酶
硫氧还蛋白还原酶
生物化学
生物
线粒体
蛋白质亚单位
胞浆
硒蛋白
细胞生物学
氧化应激
酶
超氧化物歧化酶
过氧化物酶
谷胱甘肽过氧化物酶
基因
作者
Antonio Miranda‐Vizuete,Anastasios Damdimopoulos,Giannis Spyrou
标识
DOI:10.1089/ars.2000.2.4-801
摘要
Eukaryotic organisms from yeast to human possess a mitochondrial thioredoxin system composed of thioredoxin and thioredoxin reductase, similar to the cytosolic thioredoxin system that exists in the same cells. Yeast and mammalian mitochondrial thioredoxins are monomers of approximately 12 kDa and contain the typical conserved active site WCGPC. However, there are important differences between yeast and mammalian mitochondrial thioredoxin reductases that resemble the differences between their cytosolic counterparts. Mammalian mitochondrial thioredoxin reductase is a selenoprotein that forms a homodimer of 55 kDa/subunit; while yeast mitochondrial thioredoxin reductase is a homodimer of 37 kDa/subunit and does not contain selenocysteine. A function of the mitochondrial thioredoxin system is as electron donor for a mitochondrial peroxiredoxin, an enzyme that detoxifies the hydrogen peroxide generated by the mitochondrial metabolism. Experiments with yeast mutants lacking both the mitochondrial thioredoxin system as well as the mitochondrial peroxiredoxin system suggest an important role for mitochondrial thioredoxin, thioredoxin reductase, and peroxiredoxin in the protection against oxidative stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI