Identifying Keystone Species in the Human Gut Microbiome from Metagenomic Timeseries Using Sparse Linear Regression

基因组 微生物群 计算生物学 肠道微生物群 回归 生物 生物信息学 统计 遗传学 数学 基因
作者
Charles K. Fisher,Pankaj Mehta
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:9 (7): e102451-e102451 被引量:327
标识
DOI:10.1371/journal.pone.0102451
摘要

Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is possible to follow the relative abundance of microbes in a community over time. These microbial communities exhibit rich ecological dynamics and an important goal of microbial ecology is to infer the interactions between species from sequence data. Any algorithm for inferring species interactions must overcome three obstacles: 1) a correlation between the abundances of two species does not imply that those species are interacting, 2) the sum constraint on the relative abundances obtained from metagenomic studies makes it difficult to infer the parameters in timeseries models, and 3) errors due to experimental uncertainty, or mis-assignment of sequencing reads into operational taxonomic units, bias inferences of species interactions. Here we introduce an approach, Learning Interactions from MIcrobial Time Series (LIMITS), that overcomes these obstacles. LIMITS uses sparse linear regression with boostrap aggregation to infer a discrete-time Lotka-Volterra model for microbial dynamics. We tested LIMITS on synthetic data and showed that it could reliably infer the topology of the inter-species ecological interactions. We then used LIMITS to characterize the species interactions in the gut microbiomes of two individuals and found that the interaction networks varied significantly between individuals. Furthermore, we found that the interaction networks of the two individuals are dominated by distinct "keystone species", Bacteroides fragilis and Bacteroided stercosis, that have a disproportionate influence on the structure of the gut microbiome even though they are only found in moderate abundance. Based on our results, we hypothesize that the abundances of certain keystone species may be responsible for individuality in the human gut microbiome.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助追寻的妙松采纳,获得10
1秒前
SciGPT应助沐沐采纳,获得10
1秒前
橘砸完成签到 ,获得积分10
2秒前
CipherSage应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
3秒前
李健应助科研通管家采纳,获得10
3秒前
科研通AI5应助呵呵喊我采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
xzq应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
5秒前
猪猪hero应助陈媛媛陈媛媛采纳,获得10
5秒前
lf-leo发布了新的文献求助10
5秒前
刘茂帅完成签到,获得积分10
6秒前
bkagyin应助妖孽采纳,获得10
7秒前
7秒前
科研通AI2S应助木瓜采纳,获得10
7秒前
8秒前
猪猪hero应助jiwoong采纳,获得10
9秒前
小丛完成签到 ,获得积分10
10秒前
清蒸可达鸭完成签到,获得积分10
10秒前
爱学习的小张完成签到,获得积分10
10秒前
猪猪hero发布了新的文献求助30
11秒前
nature预备军发布了新的文献求助100
11秒前
爆米花应助王弈轩采纳,获得10
12秒前
一一应助Zp采纳,获得10
13秒前
我是老大应助YJ888采纳,获得10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752875
求助须知:如何正确求助?哪些是违规求助? 3296450
关于积分的说明 10093989
捐赠科研通 3011290
什么是DOI,文献DOI怎么找? 1653702
邀请新用户注册赠送积分活动 788396
科研通“疑难数据库(出版商)”最低求助积分说明 752809