能量(信号处理)
订单(交换)
基态
电子
费米气体
物理
国家(计算机科学)
原子物理学
组合数学
量子力学
数学
财务
算法
经济
作者
P. C. Hohenberg,W. Kohn
出处
期刊:Physical Review
[American Physical Society]
日期:1964-11-09
卷期号:136 (3B): B864-B871
被引量:48242
标识
DOI:10.1103/physrev.136.b864
摘要
This paper deals with the ground state of an interacting electron gas in an external potential $v(\mathrm{r})$. It is proved that there exists a universal functional of the density, $F[n(\mathrm{r})]$, independent of $v(\mathrm{r})$, such that the expression $E\ensuremath{\equiv}\ensuremath{\int}v(\mathrm{r})n(\mathrm{r})d\mathrm{r}+F[n(\mathrm{r})]$ has as its minimum value the correct ground-state energy associated with $v(\mathrm{r})$. The functional $F[n(\mathrm{r})]$ is then discussed for two situations: (1) $n(\mathrm{r})={n}_{0}+\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}(\mathrm{r})$, $\frac{\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}}{{n}_{0}}\ensuremath{\ll}1$, and (2) $n(\mathrm{r})=\ensuremath{\phi}(\frac{\mathrm{r}}{{r}_{0}})$ with $\ensuremath{\phi}$ arbitrary and ${r}_{0}\ensuremath{\rightarrow}\ensuremath{\infty}$. In both cases $F$ can be expressed entirely in terms of the correlation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of these methods are presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI