新功能化
生物
多倍体
亚功能化
基因剂量
基因复制
基因组
进化生物学
植物进化
基因组进化
拷贝数变化
遗传学
表观遗传学
基因
协同进化
非整倍体
基因家族
基因表达
染色体
作者
Gavin C. Conant,James A. Birchler,J. Chris Pires
标识
DOI:10.1016/j.pbi.2014.05.008
摘要
Requirements to maintain dosage balance shape many genome-scale patterns in organisms, including the resolution of whole genome duplications (WGD), as well as the varied effects of aneuploidy, segmental duplications, tandem duplications, gene copy number variations (CNV), and epigenetic marks. Like neofunctionalization and subfunctionalization, the impact of absolute and relative dosage varies over time. These variations are of particular importance in understanding the role of dosage in the evolution of polyploid organisms. Numerous investigations have found the consequences of polyploidy remain distinct from small-scale duplications (SSD). This observation is significant as all flowering plants have experienced at least two ancient polyploid events, and many angiosperm lineages have undergone additional rounds of polyploidy. Intriguingly, recent studies indicate a link between how epigenetic marks in recent allopolyploids may induce immediate changes in gene expression and the longer-term patterns of biased fractionation and chromosomal evolution. We argue that dosage effects represent one aspect of an emerging pluralistic framework, a framework that will use biophysics, genomic technologies, and systems-level models of cells to broaden our view of how genomes evolve.
科研通智能强力驱动
Strongly Powered by AbleSci AI