C-Met公司
酪氨酸激酶
癌症研究
受体酪氨酸激酶
酪氨酸磷酸化
蛋白激酶B
磷酸化
激酶
生物
信号转导
肝细胞生长因子
细胞生物学
生物化学
受体
作者
James G. Christensen,Randall Schreck,Jon Burrows,Poonam A. Kuruganti,Emily Chan,Phuong T. Le,Jeffrey Chen,Xueyan Wang,Lany Ruslim,Robert A. Blake,Kenneth E. Lipson,John Ramphal,Steven Do,Jingrong Jean Cui,Julie M. Cherrington,Dirk B. Mendel
出处
期刊:PubMed
日期:2003-11-01
卷期号:63 (21): 7345-55
被引量:491
摘要
The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), have been implicated in the development and progression of several human cancers and are attractive targets for cancer therapy. PHA-665752 was identified as a small molecule, ATP-competitive, active-site inhibitor of the catalytic activity of c-Met kinase (K(i) 4 nM). PHA-665752 also exhibited >50-fold selectivity for c-Met compared with a panel of diverse tyrosine and serine-threonine kinases. In cellular studies, PHA-665752 potently inhibited HGF-stimulated and constitutive c-Met phosphorylation, as well as HGF and c-Met-driven phenotypes such as cell growth (proliferation and survival), cell motility, invasion, and/or morphology of a variety of tumor cells. In addition, PHA-665752 inhibited HGF-stimulated or constitutive phosphorylation of mediators of downstream signal transduction of c-Met, including Gab-1, extracellular regulated kinase, Akt, signal transducer and activator of transcription 3, phospholipase C gamma, and focal adhesion kinase, in multiple tumor cell lines in a pattern correlating to the phenotypic response of a given tumor cell. In in vivo studies, a single dose of PHA-665752 inhibited c-Met phosphorylation in tumor xenografts for up to 12 h. Inhibition of c-Met phosphorylation was associated with dose-dependent tumor growth inhibition/growth delay over a repeated administration schedule at well-tolerated doses. Interestingly, potent cytoreductive activity was demonstrated in a gastric carcinoma xenograft model. Collectively, these results demonstrate the feasibility of selectively targeting c-Met with ATP-competitive small-molecules and suggest the therapeutic potential of targeting c-Met in human cancers.
科研通智能强力驱动
Strongly Powered by AbleSci AI