气溶胶
化学
生物地球化学循环
总有机碳
环境化学
氧化态
碳纤维
大气化学
有机化学
臭氧
金属
复合数
复合材料
材料科学
作者
Jesse H. Kroll,Neil M. Donahue,J. L. Jiménez,Sean H. Kessler,Manjula R. Canagaratna,Kevin R. Wilson,Katye E. Altieri,Lynn Mazzoleni,Andrew S. Wozniak,Hendrik Bluhm,Erin R. Mysak,Jared D. Smith,C. E. Kolb,Douglas R. Worsnop
出处
期刊:Nature Chemistry
[Springer Nature]
日期:2011-01-09
卷期号:3 (2): 133-139
被引量:1195
摘要
A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here, we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state, a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of the average carbon oxidation state, using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number. Organic aerosol particles are important to climate and human health but remain poorly characterized on account of their immense chemical complexity. Here, using both field and laboratory measurements of organic aerosol, we demonstrate the use of average carbon oxidation state for describing aerosol chemical properties and atmospheric transformations.
科研通智能强力驱动
Strongly Powered by AbleSci AI