We performed hybrid functional calculations of native point defects and dangling bonds (DBs) in α-Al2O3 to aid in the identification of charge-trap and fixed-charge centers in Al2O3/III-V metal-oxide-semiconductor structures. We find that Al vacancies (VAl) are deep acceptors with transition levels less than 2.6 eV above the valence band, whereas Al interstitials (Ali) are deep donors with transition levels within ∼2 eV of the conduction band. Oxygen vacancies (VO) introduce donor levels near midgap and an acceptor level at ∼1 eV below the conduction band, while oxygen interstitials (Oi) are deep acceptors, with a transition level near the mid gap. Taking into account the band offset between α-Al2O3 and III-V semiconductors, our results indicate that VO and Al DBs act as charge traps (possibly causing carrier leakage), while VAl, Ali, Oi, and O DBs act as fixed-charge centers in α-Al2O3/III-V metal-oxide-semiconductor structures.