Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

细胞自动机 计算机科学 模糊逻辑 城市规划 过程(计算) 地理空间分析 人工智能 地理 工程类 土木工程 遥感 操作系统
作者
Yousef Khajavigodellou,Ali Asghar Alesheikh,Abdulrazak A. Mohammed,Kamran Chapi
出处
期刊:Proceedings of SPIE 卷期号:9219: 921909-921909 被引量:1
标识
DOI:10.1117/12.2063097
摘要

Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听闻墨笙完成签到 ,获得积分10
刚刚
rita完成签到,获得积分10
1秒前
金铭完成签到,获得积分10
1秒前
与一完成签到 ,获得积分10
1秒前
MiSD完成签到,获得积分10
2秒前
cdercder给kskskk的求助进行了留言
3秒前
王三石完成签到,获得积分10
3秒前
小笼包完成签到,获得积分10
4秒前
稻草人完成签到,获得积分10
4秒前
温柔的中蓝完成签到,获得积分10
5秒前
小许会更好完成签到,获得积分10
6秒前
午夜煎饼完成签到 ,获得积分10
6秒前
123完成签到,获得积分10
6秒前
123_完成签到,获得积分10
6秒前
6秒前
桐桐应助鉴湖采纳,获得10
7秒前
kingwill举报garden求助涉嫌违规
8秒前
cherry完成签到,获得积分10
9秒前
漂亮夏兰发布了新的文献求助20
9秒前
单纯夏烟发布了新的文献求助10
10秒前
10秒前
孤独的AD钙完成签到,获得积分10
10秒前
10秒前
zcydbttj2011完成签到 ,获得积分10
10秒前
www发布了新的文献求助10
10秒前
ooa4321完成签到,获得积分10
11秒前
张庭豪完成签到,获得积分10
12秒前
14秒前
北秋完成签到,获得积分10
14秒前
14秒前
Ice完成签到,获得积分10
14秒前
15秒前
兔宝宝发布了新的文献求助10
15秒前
15秒前
小鳄鱼发布了新的文献求助10
16秒前
马彦杰完成签到,获得积分10
16秒前
www完成签到,获得积分10
18秒前
冷傲半邪完成签到,获得积分10
18秒前
剑指东方是为谁应助杨__采纳,获得10
18秒前
ZG发布了新的文献求助30
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3750098
求助须知:如何正确求助?哪些是违规求助? 3293388
关于积分的说明 10081485
捐赠科研通 3008743
什么是DOI,文献DOI怎么找? 1652384
邀请新用户注册赠送积分活动 787426
科研通“疑难数据库(出版商)”最低求助积分说明 752179