高分辨率透射电子显微镜
硫酸
氧化剂
硝酸
石墨烯
表面改性
材料科学
碳纳米管
化学工程
碳纤维
透射电子显微镜
氨
形态学(生物学)
纳米技术
化学
复合数
复合材料
有机化学
冶金
生物
工程类
遗传学
作者
Weiwei Zhou,Shun Sasaki,Akira Kawasaki
出处
期刊:Carbon
[Elsevier]
日期:2014-06-28
卷期号:78: 121-129
被引量:122
标识
DOI:10.1016/j.carbon.2014.06.055
摘要
The defect-type evolution and gradual increase in nanodefects in the outer walls of multiwalled carbon nanotubes (MWCNTs) in a chemically oxidizing environment were thoroughly investigated using a mixture of sulfuric acid (H2SO4) and nitric acid (HNO3). A fairly low temperature of 323 K was employed for the acid treatment, and this limited the reaction rate to provide a mild acidic environment for gradual chemical oxidation compared to commonly used treatment conditions. High-resolution transmission electron microscopy (HRTEM) observations clearly demonstrated the formation of groove-type defects in the outer walls of MWCNTs in the early period around 0.5–3 h, followed by a morphological change into circumference-type defects and further into unzipped graphene nanoribbons. A unique parabolic variation in the intensity ratio of D and G bands (ID/IG) was observed. This observation supports the gradual oxidation of graphitic walls with increasing acid treatment time and corresponds well with the formation and evolution of nanodefects. Herein, the appropriate acid treatment time that would result in an effective number of nanodefects via suitable carboxyl functionalization, providing preferential nanocarbide sites for interfacial improvement as well as uniform dispersibility of MWCNTs, has been discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI