肿瘤异质性
遗传异质性
乳腺癌
恶性肿瘤
医学
转移性乳腺癌
癌症
转移
癌症的体细胞进化
癌细胞
化疗
表型
癌症研究
病理
生物
基因
内科学
遗传学
作者
DF Hayes,Costanza Paoletti
摘要
Abstract Tumour heterogeneity is a major barrier to cure breast cancer. It can exist between patients with different intrinsic subtypes of breast cancer or within an individual patient with breast cancer. In the latter case, heterogeneity has been observed between different metastatic sites, between metastatic sites and the original primary tumour, and even within a single tumour at either a metastatic or a primary site. Tumour heterogeneity is a function of two separate, although linked, processes. First, genetic instability is a hallmark of malignancy, and results in ‘fixed’ genetic changes that are almost certainly carried forward through progression of the cancer over time, with increasingly complex additional genetic changes in new metastases as they arise. The second type of heterogeneity is due to differential but ‘plastic’ expression of various genes important in the biology and response to various therapies. Together, these processes result in highly variable cancers with differential response, and resistance, to both targeted (e.g. endocrine or anti‐human epithelial growth receptor type 2 ( HER 2) agents) and nontargeted therapies (e.g. chemotherapy). Ideally, tumour heterogeneity would be monitored over time, especially in relation to therapeutic strategies. However, biopsies of metastases require invasive and costly procedures, and biopsies of multiple metastases, or serially over time, are impractical. Circulating tumour cells ( CTC s) represent a potential surrogate for tissue‐based cancer and therefore might provide the opportunity to monitor serial changes in tumour biology. Recent advances have enabled accurate and reliable quantification and molecular characterization of CTC s with regard to a number of important biomarkers including oestrogen receptor alpha and HER 2. Preliminary data have demonstrated that expression of these markers between CTC s in individual patients with metastatic breast cancer reflects the heterogeneity of the underlying tumours. Future studies are designed to determine the clinical utility of these novel technologies in either research or routine clinical settings.
科研通智能强力驱动
Strongly Powered by AbleSci AI