Multiclass classification of subjects with sleep apnoea–hypopnoea syndrome through snoring analysis

多导睡眠图 金标准(测试) 医学 逻辑回归 计算机科学 语音识别 模式识别(心理学) 人工智能 呼吸暂停 内科学
作者
Jordi Solà-Soler,J.A. Fiz,J. Morera,Raimon Jané
出处
期刊:Medical Engineering & Physics [Elsevier]
卷期号:34 (9): 1213-1220 被引量:46
标识
DOI:10.1016/j.medengphy.2011.12.008
摘要

The gold standard for diagnosing sleep apnoea–hypopnoea syndrome (SAHS) is polysomnography (PSG), an expensive, labour-intensive and time-consuming procedure. Accordingly, it would be very useful to have a screening method to allow early assessment of the severity of a subject, prior to his/her referral for PSG. Several differences have been reported between simple snorers and SAHS patients in the acoustic characteristics of snoring and its variability. In this paper, snores are fully characterised in the time domain, by their sound intensity and pitch, and in the frequency domain, by their formant frequencies and several shape and energy ratio measurements. We show that accurate multiclass classification of snoring subjects, with three levels of SAHS, can be achieved on the basis of acoustic analysis of snoring alone, without any requiring information on the duration or the number of apnoeas. Several classification methods are examined. The best of the approaches assessed is a Bayes model using a kernel density estimation method, although good results can also be obtained by a suitable combination of two binary logistic regression models. Multiclass snore-based classification allows early stratification of subjects according to their severity. This could be the basis of a single channel, snore-based screening procedure for SAHS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小可发布了新的文献求助10
刚刚
夜雨声烦完成签到,获得积分10
刚刚
MrCoolWu发布了新的文献求助10
刚刚
过时的不评完成签到,获得积分10
1秒前
1秒前
1秒前
月儿发布了新的文献求助10
2秒前
落落完成签到 ,获得积分10
2秒前
羊羊完成签到 ,获得积分20
2秒前
宁听白发布了新的文献求助10
3秒前
rookie_b0完成签到,获得积分10
3秒前
3秒前
wangyanyan完成签到,获得积分20
3秒前
标致小伙完成签到,获得积分10
4秒前
4秒前
Harlotte发布了新的文献求助10
5秒前
5秒前
潦草发布了新的文献求助10
5秒前
丘比特应助Ll采纳,获得10
6秒前
6秒前
yu完成签到 ,获得积分10
6秒前
小蘑菇应助zzznznnn采纳,获得10
6秒前
Orange应助俊秀的白猫采纳,获得30
7秒前
深情安青应助小可采纳,获得10
7秒前
7秒前
情怀应助pearl采纳,获得10
7秒前
8秒前
所所应助cybbbbbb采纳,获得10
8秒前
果汁发布了新的文献求助10
8秒前
9秒前
9秒前
Lucas应助柚子采纳,获得10
9秒前
MADKAI发布了新的文献求助10
9秒前
10秒前
爆米花应助咕咕咕采纳,获得10
10秒前
zxy发布了新的文献求助10
10秒前
11秒前
醉人的仔发布了新的文献求助10
11秒前
daguan完成签到,获得积分10
11秒前
桐桐应助nikai采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759