How Do Lignin Composition, Structure, and Cross‐Linking Affect Degradability? A Review of Cell Wall Model Studies

木质素 细胞壁 化学 水解 解聚 有机化学 生物化学 多糖
作者
John H. Grabber
出处
期刊:Crop Science [Wiley]
卷期号:45 (3): 820-831 被引量:528
标识
DOI:10.2135/cropsci2004.0191
摘要

Because of the complexity of plant cell wall biosynthesis, the mechanisms by which lignin restrict fiber degradation are poorly understood. Many aspects of grass cell wall lignification and degradation are successfully modeled by dehydrogenation polymer‐cell wall (DHP‐CW) complexes formed with primary walls of corn Zea mays L. This system was used to assess how variations in lignin composition, structure, and cross‐linking influence the hydrolysis of cell walls by fungal enzymes. Altering the normal guaiacyl, syringyl, and p ‐hydroxyphenyl makeup of lignin did not influence cell wall degradability; each unit of lignin depressed cell wall degradability by two units. Plants with perturbed lignin biosynthesis often incorporate unusual precursors into lignin and one of these, coniferaldehyde, increased lignin hydrophobicity and further depressed degradability by up to 30%. In other studies, lignin formed by gradual “bulk” or rapid “end‐wise” polymerization of monolignols had markedly different structures but similar effects on degradability. Reductions in cell wall cross‐linking, via oxidative coupling of feruloylated xylans to lignin or nucleophilic addition of cell wall sugars to lignin quinone‐methide intermediates, increased the initial hydrolysis of cell walls by up to 46% and the extent of hydrolysis by up to 28%. Overall, these studies suggest that reductions in lignin concentration, hydrophobicity, and cross‐linking will improve the enzymatic hydrolysis and utilization of structural polysaccharides for nutritional and industrial purposes. In ongoing work, we are developing a DHP‐CW system for dicots and are investigating how cross‐linking and various acylated and unusual monolignols influence the formation of lignin and the degradation of cell walls by rumen microflora.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
生生不息发布了新的文献求助10
1秒前
跳跃仙人掌应助HaojunWang采纳,获得10
1秒前
SongAce完成签到,获得积分20
1秒前
3秒前
坦率若魔完成签到,获得积分10
3秒前
3秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
5秒前
鲤鱼初柳发布了新的文献求助30
5秒前
dsaifjs发布了新的文献求助10
5秒前
6秒前
SongAce发布了新的文献求助10
6秒前
RockLee完成签到,获得积分10
6秒前
7秒前
毛毛毛毛小毛完成签到,获得积分10
8秒前
不安青牛应助YOLO采纳,获得10
8秒前
深情安青应助LennonYin采纳,获得10
9秒前
一原君发布了新的文献求助10
9秒前
chloe发布了新的文献求助10
9秒前
F0发布了新的文献求助10
9秒前
pink发布了新的文献求助10
10秒前
sabrina完成签到,获得积分10
11秒前
11秒前
11秒前
元水云发布了新的文献求助30
12秒前
12秒前
柿饼完成签到,获得积分10
13秒前
浅尝离白应助坦率若魔采纳,获得10
13秒前
CodeCraft应助生生不息采纳,获得10
13秒前
kardeem完成签到,获得积分10
13秒前
M张发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721