Reinforcement Learning: A Tutorial Survey and Recent Advances

强化学习 维数之咒 计算机科学 马尔可夫决策过程 人工智能 动态规划 随机规划 贝尔曼方程 时差学习 诅咒 数学优化 机器学习 马尔可夫过程 数学 算法 统计 人类学 社会学
作者
Abhijit Gosavi
出处
期刊:Informs Journal on Computing 卷期号:21 (2): 178-192 被引量:295
标识
DOI:10.1287/ijoc.1080.0305
摘要

In the last few years, reinforcement learning (RL), also called adaptive (or approximate) dynamic programming, has emerged as a powerful tool for solving complex sequential decision-making problems in control theory. Although seminal research in this area was performed in the artificial intelligence (AI) community, more recently it has attracted the attention of optimization theorists because of several noteworthy success stories from operations management. It is on large-scale and complex problems of dynamic optimization, in particular the Markov decision problem (MDP) and its variants, that the power of RL becomes more obvious. It has been known for many years that on large-scale MDPs, the curse of dimensionality and the curse of modeling render classical dynamic programming (DP) ineffective. The excitement in RL stems from its direct attack on these curses, which allows it to solve problems that were considered intractable via classical DP in the past. The success of RL is due to its strong mathematical roots in the principles of DP, Monte Carlo simulation, function approximation, and AI. Topics treated in some detail in this survey are temporal differences, Q-learning, semi-MDPs, and stochastic games. Several recent advances in RL, e.g., policy gradients and hierarchical RL, are covered along with references. Pointers to numerous examples of applications are provided. This overview is aimed at uncovering the mathematical roots of this science so that readers gain a clear understanding of the core concepts and are able to use them in their own research. The survey points to more than 100 references from the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒八染完成签到 ,获得积分10
刚刚
深情安青应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
啊啊完成签到,获得积分10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
Rita应助科研通管家采纳,获得10
2秒前
冰魂应助科研通管家采纳,获得10
2秒前
hlh应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
FashionBoy应助古月采纳,获得10
3秒前
大方元风完成签到 ,获得积分10
3秒前
科研通AI2S应助尔东采纳,获得10
5秒前
无限的谷丝完成签到,获得积分10
7秒前
我是老大应助开心楷瑞采纳,获得10
9秒前
上官若男应助Madao采纳,获得10
10秒前
10秒前
归尘应助aaaa采纳,获得10
13秒前
17秒前
科研通AI5应助善良豌豆采纳,获得10
18秒前
小小莫发布了新的文献求助10
23秒前
hc完成签到,获得积分10
25秒前
早发论文完成签到 ,获得积分10
26秒前
柴郡鹿完成签到,获得积分20
27秒前
33秒前
33秒前
37秒前
dfgdfgdfgd发布了新的文献求助10
38秒前
善学以致用应助qiuzhiqi采纳,获得10
38秒前
林夕发布了新的文献求助10
38秒前
科研通AI5应助浅香千雪采纳,获得10
40秒前
沅兮完成签到 ,获得积分10
45秒前
46秒前
kkkkkoi完成签到,获得积分10
47秒前
48秒前
精明凝海发布了新的文献求助10
50秒前
乐乐应助xiaoying在奋斗采纳,获得10
51秒前
善良豌豆完成签到,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775662
求助须知:如何正确求助?哪些是违规求助? 3321243
关于积分的说明 10204340
捐赠科研通 3036109
什么是DOI,文献DOI怎么找? 1666001
邀请新用户注册赠送积分活动 797244
科研通“疑难数据库(出版商)”最低求助积分说明 757766